Locally convex algebras which determine a locally compact group
Studia Mathematica, Tome 233 (2016) no. 3, pp. 197-207 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

There are several algebras associated with a locally compact group $\mathcal G$ which determine ${\mathcal G}$ in the category of topological groups, such as $L^1({\mathcal G})$, $M({\mathcal G})$, and their second duals. In this article we add a fairly large family of locally convex algebras to this list. More precisely, we show that for two infinite locally compact groups ${\mathcal G}_1$ and ${\mathcal G}_2$, there are infinitely many locally convex topologies $\tau _1$ and $\tau _2$ on the measure algebras $M({\mathcal G}_1)$ and $M({\mathcal G}_2)$, respectively, such that $(M({\mathcal G}_1),\tau _1)^{**}$ is isometrically isomorphic to $(M({\mathcal G}_2),\tau _2)^{**}$ if and only if ${\mathcal G}_1$ and ${\mathcal G}_2$ are topologically isomorphic. In particular, this leads to a new proof of Ghahramani–Lau’s isometrical isomorphism theorem for compact groups, different from those of Ghahramani and J. P. McClure (2006) and Dales et al. (2012).
DOI : 10.4064/sm7879-4-2016
Keywords: there several algebras associated locally compact group mathcal which determine mathcal category topological groups mathcal mathcal their second duals article fairly large family locally convex algebras list precisely infinite locally compact groups mathcal mathcal there infinitely many locally convex topologies tau tau measure algebras mathcal mathcal respectively mathcal tau ** isometrically isomorphic mathcal tau ** only mathcal mathcal topologically isomorphic particular leads proof ghahramani lau isometrical isomorphism theorem compact groups different those ghahramani mcclure dales

Gholam Hossein Esslamzadeh  1   ; Hossein Javanshiri  2   ; Rasoul Nasr-Isfahani  3

1 Department of Mathematics Faculty of Sciences Shiraz University Shiraz 71454, Iran
2 Department of Mathematics Yazd University P.O. Box 89195-741 Yazd, Iran
3 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156-83111, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746 Tehran, Iran
@article{10_4064_sm7879_4_2016,
     author = {Gholam Hossein Esslamzadeh and Hossein Javanshiri and Rasoul Nasr-Isfahani},
     title = {Locally convex algebras which determine a locally compact group},
     journal = {Studia Mathematica},
     pages = {197--207},
     year = {2016},
     volume = {233},
     number = {3},
     doi = {10.4064/sm7879-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7879-4-2016/}
}
TY  - JOUR
AU  - Gholam Hossein Esslamzadeh
AU  - Hossein Javanshiri
AU  - Rasoul Nasr-Isfahani
TI  - Locally convex algebras which determine a locally compact group
JO  - Studia Mathematica
PY  - 2016
SP  - 197
EP  - 207
VL  - 233
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm7879-4-2016/
DO  - 10.4064/sm7879-4-2016
LA  - en
ID  - 10_4064_sm7879_4_2016
ER  - 
%0 Journal Article
%A Gholam Hossein Esslamzadeh
%A Hossein Javanshiri
%A Rasoul Nasr-Isfahani
%T Locally convex algebras which determine a locally compact group
%J Studia Mathematica
%D 2016
%P 197-207
%V 233
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm7879-4-2016/
%R 10.4064/sm7879-4-2016
%G en
%F 10_4064_sm7879_4_2016
Gholam Hossein Esslamzadeh; Hossein Javanshiri; Rasoul Nasr-Isfahani. Locally convex algebras which determine a locally compact group. Studia Mathematica, Tome 233 (2016) no. 3, pp. 197-207. doi: 10.4064/sm7879-4-2016

Cité par Sources :