2-local Lie isomorphisms of operator algebras on Banach spaces
Studia Mathematica, Tome 229 (2015) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be complex Banach spaces of dimension greater than 2. We show that every 2-local Lie isomorphism $\phi $ of $B(X)$ onto $B(Y)$ has the form $\phi =\varphi +\tau $, where $\varphi $ is an isomorphism or the negative of an anti-isomorphism of $B(X)$ onto $B(Y)$, and $\tau $ is a homogeneous map from $B(X)$ into $\mathbb CI$ vanishing on all finite sums of commutators.
Keywords:
complex banach spaces dimension greater every local lie isomorphism phi has form phi varphi tau where varphi isomorphism negative anti isomorphism tau homogeneous map mathbb vanishing finite sums commutators
Affiliations des auteurs :
Lin Chen 1 ; Lizhong Huang 2 ; Fangyan Lu 3
@article{10_4064_sm7864_12_2015,
author = {Lin Chen and Lizhong Huang and Fangyan Lu},
title = {2-local {Lie} isomorphisms of operator algebras on {Banach} spaces},
journal = {Studia Mathematica},
pages = {1--11},
publisher = {mathdoc},
volume = {229},
number = {1},
year = {2015},
doi = {10.4064/sm7864-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7864-12-2015/}
}
TY - JOUR AU - Lin Chen AU - Lizhong Huang AU - Fangyan Lu TI - 2-local Lie isomorphisms of operator algebras on Banach spaces JO - Studia Mathematica PY - 2015 SP - 1 EP - 11 VL - 229 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm7864-12-2015/ DO - 10.4064/sm7864-12-2015 LA - en ID - 10_4064_sm7864_12_2015 ER -
%0 Journal Article %A Lin Chen %A Lizhong Huang %A Fangyan Lu %T 2-local Lie isomorphisms of operator algebras on Banach spaces %J Studia Mathematica %D 2015 %P 1-11 %V 229 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm7864-12-2015/ %R 10.4064/sm7864-12-2015 %G en %F 10_4064_sm7864_12_2015
Lin Chen; Lizhong Huang; Fangyan Lu. 2-local Lie isomorphisms of operator algebras on Banach spaces. Studia Mathematica, Tome 229 (2015) no. 1, pp. 1-11. doi: 10.4064/sm7864-12-2015
Cité par Sources :