On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces
Studia Mathematica, Tome 232 (2016) no. 1, pp. 1-6
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a locally compact Hausdorff space $K$ and a Banach space $X$ let $C_0(K, X)$ denote the space of all continuous functions $f:K\to X$ which vanish at infinity, equipped with the supremum norm. If $X$ is the scalar field, we denote $C_0(K, X)$ simply by $C_0(K)$. We prove that for locally compact Hausdorff spaces $K$ and $L$ and for a Banach space $X$ containing no copy of $c_0$, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$, then either $K$ is finite or $|K|\leq |L|$. As a consequence, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$ where $X$ contains no copy of $c_0$ and $L$ is scattered, then $K$ must be scattered.
Keywords:
locally compact hausdorff space banach space denote space continuous functions which vanish infinity equipped supremum norm scalar field denote simply prove locally compact hausdorff spaces and banach space containing copy there isomorphic embedding either finite leq consequence there isomorphic embedding where contains copy scattered scattered
Affiliations des auteurs :
Leandro Candido  1
@article{10_4064_sm7857_3_2016,
author = {Leandro Candido},
title = {On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces},
journal = {Studia Mathematica},
pages = {1--6},
year = {2016},
volume = {232},
number = {1},
doi = {10.4064/sm7857-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7857-3-2016/}
}
Leandro Candido. On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces. Studia Mathematica, Tome 232 (2016) no. 1, pp. 1-6. doi: 10.4064/sm7857-3-2016
Cité par Sources :