On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces
Studia Mathematica, Tome 232 (2016) no. 1, pp. 1-6

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a locally compact Hausdorff space $K$ and a Banach space $X$ let $C_0(K, X)$ denote the space of all continuous functions $f:K\to X$ which vanish at infinity, equipped with the supremum norm. If $X$ is the scalar field, we denote $C_0(K, X)$ simply by $C_0(K)$. We prove that for locally compact Hausdorff spaces $K$ and $L$ and for a Banach space $X$ containing no copy of $c_0$, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$, then either $K$ is finite or $|K|\leq |L|$. As a consequence, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$ where $X$ contains no copy of $c_0$ and $L$ is scattered, then $K$ must be scattered.
DOI : 10.4064/sm7857-3-2016
Keywords: locally compact hausdorff space banach space denote space continuous functions which vanish infinity equipped supremum norm scalar field denote simply prove locally compact hausdorff spaces and banach space containing copy there isomorphic embedding either finite leq consequence there isomorphic embedding where contains copy scattered scattered

Leandro Candido 1

1 Instituto de Ciência e Tecnologia Universidade Federal de São Paulo Campus São José dos Campos – Parque Tecnológico Avenida Cesare Monsueto Giulio Lattes, 1211 12231-280 São José dos Campos – SP, Brazil
@article{10_4064_sm7857_3_2016,
     author = {Leandro Candido},
     title = {On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces},
     journal = {Studia Mathematica},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm7857-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7857-3-2016/}
}
TY  - JOUR
AU  - Leandro Candido
TI  - On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 1
EP  - 6
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm7857-3-2016/
DO  - 10.4064/sm7857-3-2016
LA  - en
ID  - 10_4064_sm7857_3_2016
ER  - 
%0 Journal Article
%A Leandro Candido
%T On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces
%J Studia Mathematica
%D 2016
%P 1-6
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm7857-3-2016/
%R 10.4064/sm7857-3-2016
%G en
%F 10_4064_sm7857_3_2016
Leandro Candido. On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces. Studia Mathematica, Tome 232 (2016) no. 1, pp. 1-6. doi: 10.4064/sm7857-3-2016

Cité par Sources :