The strong Morita equivalence for coactions of a finite-dimensional $C^*$-Hopf algebra on unital $C^*$-algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 228 (2015) no. 3, pp. 259-294
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Following Jansen and Waldmann, and Kajiwara and Watatani, we introduce notions of coactions of a finite-dimensional $C^*$-Hopf algebra on a Hilbert $C^*$-bimodule of finite type in the sense of Kajiwara and Watatani and define their crossed product. We investigate their basic properties and show that the strong Morita equivalence for coactions preserves the Rokhlin property for coactions of a finite-dimensional $C^*$-Hopf algebra on unital $C^*$-algebras.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
following jansen waldmann kajiwara watatani introduce notions coactions finite dimensional * hopf algebra hilbert * bimodule finite type sense kajiwara watatani define their crossed product investigate their basic properties strong morita equivalence coactions preserves rokhlin property coactions finite dimensional * hopf algebra unital * algebras
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Kazunori Kodaka 1 ; Tamotsu Teruya 2
@article{10_4064_sm228_3_4,
     author = {Kazunori Kodaka and Tamotsu Teruya},
     title = {The strong {Morita} equivalence for coactions of a finite-dimensional $C^*${-Hopf} algebra on unital $C^*$-algebras},
     journal = {Studia Mathematica},
     pages = {259--294},
     publisher = {mathdoc},
     volume = {228},
     number = {3},
     year = {2015},
     doi = {10.4064/sm228-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-4/}
}
                      
                      
                    TY - JOUR AU - Kazunori Kodaka AU - Tamotsu Teruya TI - The strong Morita equivalence for coactions of a finite-dimensional $C^*$-Hopf algebra on unital $C^*$-algebras JO - Studia Mathematica PY - 2015 SP - 259 EP - 294 VL - 228 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-4/ DO - 10.4064/sm228-3-4 LA - en ID - 10_4064_sm228_3_4 ER -
%0 Journal Article %A Kazunori Kodaka %A Tamotsu Teruya %T The strong Morita equivalence for coactions of a finite-dimensional $C^*$-Hopf algebra on unital $C^*$-algebras %J Studia Mathematica %D 2015 %P 259-294 %V 228 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-4/ %R 10.4064/sm228-3-4 %G en %F 10_4064_sm228_3_4
Kazunori Kodaka; Tamotsu Teruya. The strong Morita equivalence for coactions of a finite-dimensional $C^*$-Hopf algebra on unital $C^*$-algebras. Studia Mathematica, Tome 228 (2015) no. 3, pp. 259-294. doi: 10.4064/sm228-3-4
Cité par Sources :
