Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators
Studia Mathematica, Tome 228 (2015) no. 2, pp. 177-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative $L_p$-spaces, $1 p \infty $, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative $L_p$-spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these results to noncommutative fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in particular, to noncommutative Lorentz spaces $L_{p,q}$. Norm convergence of ergodic averages in noncommutative fully symmetric Banach spaces is also studied.
Keywords:
junge employing technique noncommutative interpolation established maximal ergodic theorem noncommutative p spaces infty derived corresponding maximal ergodic inequalities individual ergodic theorems article derive maximal ergodic inequalities noncommutative p spaces directly results yeadon apply prove corresponding individual besicovitch weighted ergodic theorems extend these results noncommutative fully symmetric banach spaces fatou property nontrivial boyd indices particular noncommutative lorentz spaces norm convergence ergodic averages noncommutative fully symmetric banach spaces studied
Affiliations des auteurs :
Vladimir Chilin 1 ; Semyon Litvinov 2
@article{10_4064_sm228_2_5,
author = {Vladimir Chilin and Semyon Litvinov},
title = {Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators},
journal = {Studia Mathematica},
pages = {177--195},
publisher = {mathdoc},
volume = {228},
number = {2},
year = {2015},
doi = {10.4064/sm228-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/}
}
TY - JOUR AU - Vladimir Chilin AU - Semyon Litvinov TI - Ergodic theorems in fully symmetric spaces of $\tau $-measurable operators JO - Studia Mathematica PY - 2015 SP - 177 EP - 195 VL - 228 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/ DO - 10.4064/sm228-2-5 LA - en ID - 10_4064_sm228_2_5 ER -
%0 Journal Article %A Vladimir Chilin %A Semyon Litvinov %T Ergodic theorems in fully symmetric spaces of $\tau $-measurable operators %J Studia Mathematica %D 2015 %P 177-195 %V 228 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/ %R 10.4064/sm228-2-5 %G en %F 10_4064_sm228_2_5
Vladimir Chilin; Semyon Litvinov. Ergodic theorems in fully symmetric spaces of $\tau $-measurable operators. Studia Mathematica, Tome 228 (2015) no. 2, pp. 177-195. doi: 10.4064/sm228-2-5
Cité par Sources :