Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative $L_p$-spaces, $1 p \infty $, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative $L_p$-spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these results to noncommutative fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in particular, to noncommutative Lorentz spaces $L_{p,q}$. Norm convergence of ergodic averages in noncommutative fully symmetric Banach spaces is also studied.
@article{10_4064_sm228_2_5,
author = {Vladimir Chilin and Semyon Litvinov},
title = {Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators},
journal = {Studia Mathematica},
pages = {177--195},
year = {2015},
volume = {228},
number = {2},
doi = {10.4064/sm228-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/}
}
TY - JOUR
AU - Vladimir Chilin
AU - Semyon Litvinov
TI - Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators
JO - Studia Mathematica
PY - 2015
SP - 177
EP - 195
VL - 228
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/
DO - 10.4064/sm228-2-5
LA - en
ID - 10_4064_sm228_2_5
ER -
%0 Journal Article
%A Vladimir Chilin
%A Semyon Litvinov
%T Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators
%J Studia Mathematica
%D 2015
%P 177-195
%V 228
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/
%R 10.4064/sm228-2-5
%G en
%F 10_4064_sm228_2_5
Vladimir Chilin; Semyon Litvinov. Ergodic theorems in fully symmetric spaces
of $\tau $-measurable operators. Studia Mathematica, Tome 228 (2015) no. 2, pp. 177-195. doi: 10.4064/sm228-2-5