Ergodic theorems in fully symmetric spaces of $\tau $-measurable operators
Studia Mathematica, Tome 228 (2015) no. 2, pp. 177-195

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative $L_p$-spaces, $1 p \infty $, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative $L_p$-spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these results to noncommutative fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in particular, to noncommutative Lorentz spaces $L_{p,q}$. Norm convergence of ergodic averages in noncommutative fully symmetric Banach spaces is also studied.
DOI : 10.4064/sm228-2-5
Keywords: junge employing technique noncommutative interpolation established maximal ergodic theorem noncommutative p spaces infty derived corresponding maximal ergodic inequalities individual ergodic theorems article derive maximal ergodic inequalities noncommutative p spaces directly results yeadon apply prove corresponding individual besicovitch weighted ergodic theorems extend these results noncommutative fully symmetric banach spaces fatou property nontrivial boyd indices particular noncommutative lorentz spaces norm convergence ergodic averages noncommutative fully symmetric banach spaces studied

Vladimir Chilin 1 ; Semyon Litvinov 2

1 National University of Uzbekistan Tashkent, 700174, Uzbekistan
2 Pennsylvania State University Hazleton, PA 18202, U.S.A.
@article{10_4064_sm228_2_5,
     author = {Vladimir Chilin and Semyon Litvinov},
     title = {Ergodic theorems in fully symmetric spaces
 of $\tau $-measurable operators},
     journal = {Studia Mathematica},
     pages = {177--195},
     publisher = {mathdoc},
     volume = {228},
     number = {2},
     year = {2015},
     doi = {10.4064/sm228-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/}
}
TY  - JOUR
AU  - Vladimir Chilin
AU  - Semyon Litvinov
TI  - Ergodic theorems in fully symmetric spaces
 of $\tau $-measurable operators
JO  - Studia Mathematica
PY  - 2015
SP  - 177
EP  - 195
VL  - 228
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/
DO  - 10.4064/sm228-2-5
LA  - en
ID  - 10_4064_sm228_2_5
ER  - 
%0 Journal Article
%A Vladimir Chilin
%A Semyon Litvinov
%T Ergodic theorems in fully symmetric spaces
 of $\tau $-measurable operators
%J Studia Mathematica
%D 2015
%P 177-195
%V 228
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-5/
%R 10.4064/sm228-2-5
%G en
%F 10_4064_sm228_2_5
Vladimir Chilin; Semyon Litvinov. Ergodic theorems in fully symmetric spaces
 of $\tau $-measurable operators. Studia Mathematica, Tome 228 (2015) no. 2, pp. 177-195. doi: 10.4064/sm228-2-5

Cité par Sources :