Endpoint bounds of square functions associated
with Hankel multipliers
Studia Mathematica, Tome 228 (2015) no. 2, pp. 123-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove endpoint bounds for the square function associated with radial Fourier multipliers acting on $L^{p}$ radial functions. This is a consequence of endpoint bounds for a corresponding square function for Hankel multipliers. We obtain a sharp Marcinkiewicz-type multiplier theorem for multivariate Hankel multipliers and $L^p$ bounds of maximal operators generated by Hankel multipliers as corollaries. The proof is built on techniques developed by Garrigós and Seeger for characterizations of Hankel multipliers.
Keywords:
prove endpoint bounds square function associated radial fourier multipliers acting radial functions consequence endpoint bounds corresponding square function hankel multipliers obtain sharp marcinkiewicz type multiplier theorem multivariate hankel multipliers bounds maximal operators generated hankel multipliers corollaries proof built techniques developed garrig seeger characterizations hankel multipliers
Affiliations des auteurs :
Jongchon Kim 1
@article{10_4064_sm228_2_3,
author = {Jongchon Kim},
title = {Endpoint bounds of square functions associated
with {Hankel} multipliers},
journal = {Studia Mathematica},
pages = {123--151},
publisher = {mathdoc},
volume = {228},
number = {2},
year = {2015},
doi = {10.4064/sm228-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-3/}
}
TY - JOUR AU - Jongchon Kim TI - Endpoint bounds of square functions associated with Hankel multipliers JO - Studia Mathematica PY - 2015 SP - 123 EP - 151 VL - 228 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-3/ DO - 10.4064/sm228-2-3 LA - en ID - 10_4064_sm228_2_3 ER -
Jongchon Kim. Endpoint bounds of square functions associated with Hankel multipliers. Studia Mathematica, Tome 228 (2015) no. 2, pp. 123-151. doi: 10.4064/sm228-2-3
Cité par Sources :