The aim of this paper is to prove dilation theorems for operators from a linear complex space to its $Z$-anti-dual space. The main result is that a bounded positive definite function from a $*$-semigroup $\varGamma $ into the space of all continuous linear maps from a topological vector space $X$ to its $Z$-anti-dual can be dilated to a $*$-representation of $\varGamma $ on a $Z$-Loynes space. There is also an algebraic counterpart of this result.
Keywords:
paper prove dilation theorems operators linear complex space its z anti dual space main result bounded positive definite function * semigroup vargamma space continuous linear maps topological vector space its z anti dual dilated * representation vargamma z loynes space there algebraic counterpart result
Affiliations des auteurs :
Flavius Pater 
1
;
Tudor Bînzar 
1
1
Department of Mathematics Politehnica University of Timişoara 300006 Timişoara, Romania
@article{10_4064_sm228_2_2,
author = {Flavius Pater and Tudor B{\^\i}nzar},
title = {On some dilation theorems for positive definite operator valued functions},
journal = {Studia Mathematica},
pages = {109--122},
year = {2015},
volume = {228},
number = {2},
doi = {10.4064/sm228-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-2/}
}
TY - JOUR
AU - Flavius Pater
AU - Tudor Bînzar
TI - On some dilation theorems for positive definite operator valued functions
JO - Studia Mathematica
PY - 2015
SP - 109
EP - 122
VL - 228
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-2/
DO - 10.4064/sm228-2-2
LA - en
ID - 10_4064_sm228_2_2
ER -
%0 Journal Article
%A Flavius Pater
%A Tudor Bînzar
%T On some dilation theorems for positive definite operator valued functions
%J Studia Mathematica
%D 2015
%P 109-122
%V 228
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-2/
%R 10.4064/sm228-2-2
%G en
%F 10_4064_sm228_2_2
Flavius Pater; Tudor Bînzar. On some dilation theorems for positive definite operator valued functions. Studia Mathematica, Tome 228 (2015) no. 2, pp. 109-122. doi: 10.4064/sm228-2-2