Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes
Studia Mathematica, Tome 228 (2015) no. 2, pp. 101-108
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Ortega-Cerdà–Seip demonstrated that there are bounded multiplicative Hankel forms which do not arise from bounded symbols. On the other hand, when such a form is in the Hilbert–Schmidt class $\mathcal {S}_2$, Helson showed that it has a bounded symbol. The present work investigates forms belonging to the Schatten classes between these two cases. It is shown that for every $p>(1-\log{\pi }/\log{4})^{-1}$ there exist multiplicative Hankel forms in the Schatten class $\mathcal {S}_p$ which lack bounded symbols. The lower bound on $p$ is in a certain sense optimal when the symbol of the multiplicative Hankel form is a product of homogeneous linear polynomials.
DOI : 10.4064/sm228-2-1
Keywords: ortega cerd seip demonstrated there bounded multiplicative hankel forms which arise bounded symbols other form hilbert schmidt class mathcal helson showed has bounded symbol present work investigates forms belonging schatten classes between these cases shown every log log there exist multiplicative hankel forms schatten class mathcal which lack bounded symbols lower bound certain sense optimal symbol multiplicative hankel form product homogeneous linear polynomials

Ole Fredrik Brevig  1   ; Karl-Mikael Perfekt  1

1 Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) NO-7491 Trondheim, Norway
@article{10_4064_sm228_2_1,
     author = {Ole Fredrik Brevig and Karl-Mikael Perfekt},
     title = {Failure of {Nehari's} theorem for multiplicative {Hankel} forms in {Schatten} classes},
     journal = {Studia Mathematica},
     pages = {101--108},
     year = {2015},
     volume = {228},
     number = {2},
     doi = {10.4064/sm228-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-1/}
}
TY  - JOUR
AU  - Ole Fredrik Brevig
AU  - Karl-Mikael Perfekt
TI  - Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes
JO  - Studia Mathematica
PY  - 2015
SP  - 101
EP  - 108
VL  - 228
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-1/
DO  - 10.4064/sm228-2-1
LA  - en
ID  - 10_4064_sm228_2_1
ER  - 
%0 Journal Article
%A Ole Fredrik Brevig
%A Karl-Mikael Perfekt
%T Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes
%J Studia Mathematica
%D 2015
%P 101-108
%V 228
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-2-1/
%R 10.4064/sm228-2-1
%G en
%F 10_4064_sm228_2_1
Ole Fredrik Brevig; Karl-Mikael Perfekt. Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes. Studia Mathematica, Tome 228 (2015) no. 2, pp. 101-108. doi: 10.4064/sm228-2-1

Cité par Sources :