On the Lukacs property for free random variables
Studia Mathematica, Tome 228 (2015) no. 1, pp. 55-72
The Lukacs property of the free Poisson distribution is studied. We prove that if free $\mathbb X$ and $\mathbb Y$ are free Poisson distributed with suitable parameters, then $\mathbb X+\mathbb Y$ and $(\mathbb X+\mathbb Y)^{-{1}/{2}}\mathbb X(\mathbb X+\mathbb Y)^{-{1}/{2}}$ are free. As an auxiliary result we compute the joint cumulants of $\mathbb X$ and $\mathbb X^{-1}$ for free Poisson distributed $\mathbb X$. We also study the Lukacs property of the free Gamma distribution.
Keywords:
lukacs property poisson distribution studied prove mathbb mathbb poisson distributed suitable parameters mathbb mathbb mathbb mathbb mathbb mathbb mathbb auxiliary result compute joint cumulants mathbb mathbb poisson distributed mathbb study lukacs property gamma distribution
Affiliations des auteurs :
Kamil Szpojankowski  1
@article{10_4064_sm228_1_6,
author = {Kamil Szpojankowski},
title = {On the {Lukacs} property for free random variables},
journal = {Studia Mathematica},
pages = {55--72},
year = {2015},
volume = {228},
number = {1},
doi = {10.4064/sm228-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-6/}
}
Kamil Szpojankowski. On the Lukacs property for free random variables. Studia Mathematica, Tome 228 (2015) no. 1, pp. 55-72. doi: 10.4064/sm228-1-6
Cité par Sources :