Hölder's inequality for roots of symmetric operator spaces
Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a version of Hölder's inequality with a constant for $p$th roots of symmetric operator spaces of operators affiliated to a semifinite von Neumann algebra factor, and with constant equal to $1$ for strongly symmetric operator spaces.
DOI : 10.4064/sm228-1-5
Keywords: prove version lders inequality constant pth roots symmetric operator spaces operators affiliated semifinite von neumann algebra factor constant equal strongly symmetric operator spaces

Ken Dykema 1 ; Anna Skripka 2

1 Department of Mathematics Texas A&M University College Station, TX 77843-3368, U.S.A.
2 Department of Mathematics and Statistics University of New Mexico 400 Yale Blvd NE, MSC01 1115 Albuquerque, NM 87131, U.S.A.
@article{10_4064_sm228_1_5,
     author = {Ken Dykema and Anna Skripka},
     title = {H\"older's inequality for roots of symmetric operator spaces},
     journal = {Studia Mathematica},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {228},
     number = {1},
     year = {2015},
     doi = {10.4064/sm228-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/}
}
TY  - JOUR
AU  - Ken Dykema
AU  - Anna Skripka
TI  - Hölder's inequality for roots of symmetric operator spaces
JO  - Studia Mathematica
PY  - 2015
SP  - 47
EP  - 54
VL  - 228
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/
DO  - 10.4064/sm228-1-5
LA  - en
ID  - 10_4064_sm228_1_5
ER  - 
%0 Journal Article
%A Ken Dykema
%A Anna Skripka
%T Hölder's inequality for roots of symmetric operator spaces
%J Studia Mathematica
%D 2015
%P 47-54
%V 228
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/
%R 10.4064/sm228-1-5
%G en
%F 10_4064_sm228_1_5
Ken Dykema; Anna Skripka. Hölder's inequality for roots of symmetric operator spaces. Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54. doi: 10.4064/sm228-1-5

Cité par Sources :