1Department of Mathematics Texas A&M University College Station, TX 77843-3368, U.S.A. 2Department of Mathematics and Statistics University of New Mexico 400 Yale Blvd NE, MSC01 1115 Albuquerque, NM 87131, U.S.A.
Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54
We prove a version of Hölder's inequality with a constant for $p$th roots of symmetric operator spaces of operators affiliated to a semifinite von Neumann algebra factor, and with constant equal to $1$ for strongly symmetric operator spaces.
1
Department of Mathematics Texas A&M University College Station, TX 77843-3368, U.S.A.
2
Department of Mathematics and Statistics University of New Mexico 400 Yale Blvd NE, MSC01 1115 Albuquerque, NM 87131, U.S.A.
@article{10_4064_sm228_1_5,
author = {Ken Dykema and Anna Skripka},
title = {H\"older's inequality for roots of symmetric operator spaces},
journal = {Studia Mathematica},
pages = {47--54},
year = {2015},
volume = {228},
number = {1},
doi = {10.4064/sm228-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/}
}
TY - JOUR
AU - Ken Dykema
AU - Anna Skripka
TI - Hölder's inequality for roots of symmetric operator spaces
JO - Studia Mathematica
PY - 2015
SP - 47
EP - 54
VL - 228
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/
DO - 10.4064/sm228-1-5
LA - en
ID - 10_4064_sm228_1_5
ER -
%0 Journal Article
%A Ken Dykema
%A Anna Skripka
%T Hölder's inequality for roots of symmetric operator spaces
%J Studia Mathematica
%D 2015
%P 47-54
%V 228
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/
%R 10.4064/sm228-1-5
%G en
%F 10_4064_sm228_1_5
Ken Dykema; Anna Skripka. Hölder's inequality for roots of symmetric operator spaces. Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54. doi: 10.4064/sm228-1-5