Hölder's inequality for roots of symmetric operator spaces
Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a version of Hölder's inequality with a constant for $p$th roots of symmetric operator spaces of operators affiliated to a semifinite von Neumann algebra factor, and with constant equal to $1$ for strongly symmetric operator spaces.
Keywords:
prove version lders inequality constant pth roots symmetric operator spaces operators affiliated semifinite von neumann algebra factor constant equal strongly symmetric operator spaces
Affiliations des auteurs :
Ken Dykema 1 ; Anna Skripka 2
@article{10_4064_sm228_1_5,
author = {Ken Dykema and Anna Skripka},
title = {H\"older's inequality for roots of symmetric operator spaces},
journal = {Studia Mathematica},
pages = {47--54},
publisher = {mathdoc},
volume = {228},
number = {1},
year = {2015},
doi = {10.4064/sm228-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/}
}
TY - JOUR AU - Ken Dykema AU - Anna Skripka TI - Hölder's inequality for roots of symmetric operator spaces JO - Studia Mathematica PY - 2015 SP - 47 EP - 54 VL - 228 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-5/ DO - 10.4064/sm228-1-5 LA - en ID - 10_4064_sm228_1_5 ER -
Ken Dykema; Anna Skripka. Hölder's inequality for roots of symmetric operator spaces. Studia Mathematica, Tome 228 (2015) no. 1, pp. 47-54. doi: 10.4064/sm228-1-5
Cité par Sources :