Monotone substochastic operators and
a new Calderón couple
Studia Mathematica, Tome 227 (2015) no. 1, pp. 21-39
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
An important result on submajorization, which goes back to Hardy, Littlewood and Pólya, states that $b\preceq a$ if and only if there is a doubly stochastic matrix $A$ such that $b=Aa$. We prove that under monotonicity assumptions on the vectors $a$ and $b$ the matrix $A$ may be chosen monotone.
This result is then applied to show that $(\widetilde{L^p},L^{\infty})$ is a Calderón couple for $1\leq p\infty $, where $\widetilde{L^{p}}$ is the Köthe dual of the Cesàro space $\mathop{\rm Ces}\nolimits_{p'}$ (or equivalently the down space $L^{p'}_{\downarrow}$). In particular,
$(\widetilde{L^1},L^{\infty})$ is a Calderón couple, which gives a positive answer to
a question of Sinnamon [Si06] and complements the result of
Mastyło and Sinnamon [MS07] that $(L^{\infty}_{\downarrow},L^{1})$ is a Calderón couple.
Keywords:
important result submajorization which goes back hardy littlewood lya states preceq only there doubly stochastic matrix prove under monotonicity assumptions vectors matrix may chosen monotone result applied widetilde infty calder couple leq infty where widetilde dual ces space mathop ces nolimits equivalently down space downarrow particular widetilde infty calder couple which gives positive answer question sinnamon complements result masty sinnamon infty downarrow calder couple
Affiliations des auteurs :
Karol Leśnik 1
@article{10_4064_sm227_1_2,
author = {Karol Le\'snik},
title = {Monotone substochastic operators and
a new {Calder\'on} couple},
journal = {Studia Mathematica},
pages = {21--39},
year = {2015},
volume = {227},
number = {1},
doi = {10.4064/sm227-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-2/}
}
Karol Leśnik. Monotone substochastic operators and a new Calderón couple. Studia Mathematica, Tome 227 (2015) no. 1, pp. 21-39. doi: 10.4064/sm227-1-2
Cité par Sources :