Optimal estimates for the fractional Hardy operator
Studia Mathematica, Tome 227 (2015) no. 1, pp. 1-19
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A_{\alpha}f(x) = |B(0,|x|)|^{-\alpha/n} \int_{B(0,|x|)}
f(t) \,dt$ be the $n$-dimensional fractional Hardy operator, where
$0\alpha \le n$. It is well-known that $A_{\alpha}$ is bounded from $L^p$
to $L^{p_\alpha}$ with $p_\alpha=np/(\alpha p-np+n)$ when
$n(1-1/p)\alpha \le n$. We improve this result within the framework of
Banach function spaces, for instance, weighted Lebesgue spaces and
Lorentz spaces. We in fact find a `source' space $S_{\alpha,Y}$,
which is strictly larger than $X$, and a `target' space $T_Y$,
which is strictly smaller than $Y$, under the assumption that
$A_{\alpha}$ is bounded from $X$ into $Y$ and the Hardy–Littlewood
maximal operator $M$ is bounded from $Y$ into $Y$, and prove that
$A_{\alpha}$ is bounded from $S_{\alpha,Y}$ into $T_Y$. We prove
optimality results for the action of $A_{\alpha}$ and the associate
operator $A'_\alpha$ on such spaces, as an extension of the results of Mizuta et al. (2013)
and Nekvinda and Pick (2011). We also study the duals of optimal spaces for $A_\alpha$.
Keywords:
alpha alpha int n dimensional fractional hardy operator where alpha well known alpha bounded alpha alpha alpha p np alpha improve result within framework banach function spaces instance weighted lebesgue spaces lorentz spaces source space alpha which strictly larger nbsp target space nbsp which strictly smaller nbsp under assumption alpha bounded hardy littlewood maximal operator bounded prove alpha bounded alpha prove optimality results action alpha associate operator alpha spaces extension results mizuta nekvinda pick study duals optimal spaces nbsp alpha
Affiliations des auteurs :
Yoshihiro Mizuta 1 ; Aleš Nekvinda 2 ; Tetsu Shimomura 3
@article{10_4064_sm227_1_1,
author = {Yoshihiro Mizuta and Ale\v{s} Nekvinda and Tetsu Shimomura},
title = {Optimal estimates for the fractional {Hardy} operator},
journal = {Studia Mathematica},
pages = {1--19},
year = {2015},
volume = {227},
number = {1},
doi = {10.4064/sm227-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-1/}
}
TY - JOUR AU - Yoshihiro Mizuta AU - Aleš Nekvinda AU - Tetsu Shimomura TI - Optimal estimates for the fractional Hardy operator JO - Studia Mathematica PY - 2015 SP - 1 EP - 19 VL - 227 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-1/ DO - 10.4064/sm227-1-1 LA - en ID - 10_4064_sm227_1_1 ER -
Yoshihiro Mizuta; Aleš Nekvinda; Tetsu Shimomura. Optimal estimates for the fractional Hardy operator. Studia Mathematica, Tome 227 (2015) no. 1, pp. 1-19. doi: 10.4064/sm227-1-1
Cité par Sources :