1Department of Mechanical Systems Engineering Hiroshima Institute of Technology 2-1-1 Miyake Saeki-ku, Hiroshima 731-5193, Japan 2Faculty of Civil Engineering Czech Technical University Thákurova 7 166 29 Praha 6, Czech Republic 3Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan
Studia Mathematica, Tome 227 (2015) no. 1, pp. 1-19
Let $A_{\alpha}f(x) = |B(0,|x|)|^{-\alpha/n} \int_{B(0,|x|)}
f(t) \,dt$ be the $n$-dimensional fractional Hardy operator, where
$0\alpha \le n$. It is well-known that $A_{\alpha}$ is bounded from $L^p$
to $L^{p_\alpha}$ with $p_\alpha=np/(\alpha p-np+n)$ when
$n(1-1/p)\alpha \le n$. We improve this result within the framework of
Banach function spaces, for instance, weighted Lebesgue spaces and
Lorentz spaces. We in fact find a `source' space $S_{\alpha,Y}$,
which is strictly larger than $X$, and a `target' space $T_Y$,
which is strictly smaller than $Y$, under the assumption that
$A_{\alpha}$ is bounded from $X$ into $Y$ and the Hardy–Littlewood
maximal operator $M$ is bounded from $Y$ into $Y$, and prove that
$A_{\alpha}$ is bounded from $S_{\alpha,Y}$ into $T_Y$. We prove
optimality results for the action of $A_{\alpha}$ and the associate
operator $A'_\alpha$ on such spaces, as an extension of the results of Mizuta et al. (2013)
and Nekvinda and Pick (2011). We also study the duals of optimal spaces for $A_\alpha$.
1
Department of Mechanical Systems Engineering Hiroshima Institute of Technology 2-1-1 Miyake Saeki-ku, Hiroshima 731-5193, Japan
2
Faculty of Civil Engineering Czech Technical University Thákurova 7 166 29 Praha 6, Czech Republic
3
Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan
@article{10_4064_sm227_1_1,
author = {Yoshihiro Mizuta and Ale\v{s} Nekvinda and Tetsu Shimomura},
title = {Optimal estimates for the fractional {Hardy} operator},
journal = {Studia Mathematica},
pages = {1--19},
year = {2015},
volume = {227},
number = {1},
doi = {10.4064/sm227-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-1/}
}
TY - JOUR
AU - Yoshihiro Mizuta
AU - Aleš Nekvinda
AU - Tetsu Shimomura
TI - Optimal estimates for the fractional Hardy operator
JO - Studia Mathematica
PY - 2015
SP - 1
EP - 19
VL - 227
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-1/
DO - 10.4064/sm227-1-1
LA - en
ID - 10_4064_sm227_1_1
ER -
%0 Journal Article
%A Yoshihiro Mizuta
%A Aleš Nekvinda
%A Tetsu Shimomura
%T Optimal estimates for the fractional Hardy operator
%J Studia Mathematica
%D 2015
%P 1-19
%V 227
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm227-1-1/
%R 10.4064/sm227-1-1
%G en
%F 10_4064_sm227_1_1
Yoshihiro Mizuta; Aleš Nekvinda; Tetsu Shimomura. Optimal estimates for the fractional Hardy operator. Studia Mathematica, Tome 227 (2015) no. 1, pp. 1-19. doi: 10.4064/sm227-1-1