Unconditionality of orthogonal spline systems in $H^1$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 226 (2015) no. 2, pp. 123-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order $k$ is an unconditional basis in the atomic Hardy space $H^1[0,1]$. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
simple geometric characterization knot sequences which corresponding orthonormal spline system arbitrary order unconditional basis atomic hardy space
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Gegham Gevorkyan 1 ; Anna Kamont 2 ; Karen Keryan 1 ; Markus Passenbrunner 3
@article{10_4064_sm226_2_2,
     author = {Gegham Gevorkyan and Anna Kamont and Karen Keryan and Markus Passenbrunner},
     title = {Unconditionality of orthogonal spline systems in $H^1$},
     journal = {Studia Mathematica},
     pages = {123--154},
     publisher = {mathdoc},
     volume = {226},
     number = {2},
     year = {2015},
     doi = {10.4064/sm226-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm226-2-2/}
}
                      
                      
                    TY - JOUR AU - Gegham Gevorkyan AU - Anna Kamont AU - Karen Keryan AU - Markus Passenbrunner TI - Unconditionality of orthogonal spline systems in $H^1$ JO - Studia Mathematica PY - 2015 SP - 123 EP - 154 VL - 226 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm226-2-2/ DO - 10.4064/sm226-2-2 LA - en ID - 10_4064_sm226_2_2 ER -
%0 Journal Article %A Gegham Gevorkyan %A Anna Kamont %A Karen Keryan %A Markus Passenbrunner %T Unconditionality of orthogonal spline systems in $H^1$ %J Studia Mathematica %D 2015 %P 123-154 %V 226 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm226-2-2/ %R 10.4064/sm226-2-2 %G en %F 10_4064_sm226_2_2
Gegham Gevorkyan; Anna Kamont; Karen Keryan; Markus Passenbrunner. Unconditionality of orthogonal spline systems in $H^1$. Studia Mathematica, Tome 226 (2015) no. 2, pp. 123-154. doi: 10.4064/sm226-2-2
Cité par Sources :
