Invariant means on a class of von Neumann algebras related to ultraspherical hypergroups
Studia Mathematica, Tome 225 (2014) no. 3, pp. 235-247

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be an ultraspherical hypergroup associated to a locally compact group $G$ and a spherical projector $\pi$ and let VN$(K)$ denote the dual of the Fourier algebra $A(K)$ corresponding to $K.$ In this note, invariant means on VN$(K)$ are defined and studied. We show that the set of invariant means on VN$(K)$ is nonempty. Also, we prove that, if $H$ is an open subhypergroup of $K,$ then the number of invariant means on VN$(H)$ is equal to the number of invariant means on VN$(K).$ We also show that a unique topological invariant mean exists precisely when $K$ is discrete. Finally, we show that the set TIM$(\widehat{K})$ becomes uncountable if $K$ is nondiscrete.
DOI : 10.4064/sm225-3-4
Keywords: ultraspherical hypergroup associated locally compact group spherical projector denote dual fourier algebra corresponding note invariant means defined studied set invariant means nonempty prove subhypergroup number invariant means equal number invariant means unique topological invariant mean exists precisely discrete finally set tim widehat becomes uncountable nondiscrete

Nageswaran Shravan Kumar 1

1 Department of Mathematics Indian Institute of Technology Delhi Delhi 110016, India
@article{10_4064_sm225_3_4,
     author = {Nageswaran Shravan Kumar},
     title = {Invariant means on a class of von {Neumann} algebras
 related to ultraspherical hypergroups},
     journal = {Studia Mathematica},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {225},
     number = {3},
     year = {2014},
     doi = {10.4064/sm225-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-3-4/}
}
TY  - JOUR
AU  - Nageswaran Shravan Kumar
TI  - Invariant means on a class of von Neumann algebras
 related to ultraspherical hypergroups
JO  - Studia Mathematica
PY  - 2014
SP  - 235
EP  - 247
VL  - 225
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm225-3-4/
DO  - 10.4064/sm225-3-4
LA  - en
ID  - 10_4064_sm225_3_4
ER  - 
%0 Journal Article
%A Nageswaran Shravan Kumar
%T Invariant means on a class of von Neumann algebras
 related to ultraspherical hypergroups
%J Studia Mathematica
%D 2014
%P 235-247
%V 225
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm225-3-4/
%R 10.4064/sm225-3-4
%G en
%F 10_4064_sm225_3_4
Nageswaran Shravan Kumar. Invariant means on a class of von Neumann algebras
 related to ultraspherical hypergroups. Studia Mathematica, Tome 225 (2014) no. 3, pp. 235-247. doi: 10.4064/sm225-3-4

Cité par Sources :