The simplex of tracial quantum symmetric states
Studia Mathematica, Tome 225 (2014) no. 3, pp. 203-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the space of tracial quantum symmetric states of an arbitrary unital $C^*$-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital $C^*$-algebra free product of $A$ with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when $A$ is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product $C^*$-algebras.
Keywords:
space tracial quantum symmetric states arbitrary unital * algebra choquet simplex face tracial state space universal unital * algebra product itself infinitely many times extreme points simplex dense making poulsen simplex separable nontrivial course proof characterize centers certain tracial amalgamated product * algebras
Affiliations des auteurs :
Yoann Dabrowski 1 ; Kenneth J. Dykema 2 ; Kunal Mukherjee 3
@article{10_4064_sm225_3_2,
author = {Yoann Dabrowski and Kenneth J. Dykema and Kunal Mukherjee},
title = {The simplex of tracial quantum symmetric states},
journal = {Studia Mathematica},
pages = {203--218},
publisher = {mathdoc},
volume = {225},
number = {3},
year = {2014},
doi = {10.4064/sm225-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-3-2/}
}
TY - JOUR AU - Yoann Dabrowski AU - Kenneth J. Dykema AU - Kunal Mukherjee TI - The simplex of tracial quantum symmetric states JO - Studia Mathematica PY - 2014 SP - 203 EP - 218 VL - 225 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm225-3-2/ DO - 10.4064/sm225-3-2 LA - en ID - 10_4064_sm225_3_2 ER -
Yoann Dabrowski; Kenneth J. Dykema; Kunal Mukherjee. The simplex of tracial quantum symmetric states. Studia Mathematica, Tome 225 (2014) no. 3, pp. 203-218. doi: 10.4064/sm225-3-2
Cité par Sources :