Riesz sequences and arithmetic progressions
Studia Mathematica, Tome 225 (2014) no. 2, pp. 183-191

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a set $\mathcal {S}$ of positive measure on the circle and a set $\varLambda $ of integers, one can ask whether $E(\varLambda ):=\{ e^{i\lambda t}\} _{\lambda \in \varLambda }$ is a Riesz sequence in $L^{2}(\mathcal {S})$. We consider this question in connection with some arithmetic properties of the set $\varLambda $. Improving a result of Bownik and Speegle (2006), we construct a set $\mathcal {S}$ such that $E(\varLambda )$ is never a Riesz sequence if $\varLambda $ contains an arithmetic progression of length $N$ and step $\ell =O(N^{1-\varepsilon })$ with $N$ arbitrarily large. On the other hand, we prove that every set $\mathcal {S}$ admits a Riesz sequence $E(\varLambda )$ such that $\varLambda $ does contain arithmetic progressions of length $N$ and step $\ell =O(N)$ with $N$ arbitrarily large.
DOI : 10.4064/sm225-2-5
Keywords: given set mathcal positive measure circle set varlambda integers ask whether varlambda lambda lambda varlambda riesz sequence mathcal consider question connection arithmetic properties set nbsp varlambda improving result bownik speegle construct set mathcal varlambda never riesz sequence varlambda contains arithmetic progression length nbsp step ell varepsilon arbitrarily large other prove every set nbsp mathcal admits riesz sequence varlambda varlambda does contain arithmetic progressions length nbsp step ell arbitrarily large

Itay Londner 1 ; Alexander Olevskiĭ 1

1 School of Mathematical Sciences Tel-Aviv University Tel-Aviv 69978, Israel
@article{10_4064_sm225_2_5,
     author = {Itay Londner and Alexander Olevski\u{i}},
     title = {Riesz sequences and arithmetic progressions},
     journal = {Studia Mathematica},
     pages = {183--191},
     publisher = {mathdoc},
     volume = {225},
     number = {2},
     year = {2014},
     doi = {10.4064/sm225-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-5/}
}
TY  - JOUR
AU  - Itay Londner
AU  - Alexander Olevskiĭ
TI  - Riesz sequences and arithmetic progressions
JO  - Studia Mathematica
PY  - 2014
SP  - 183
EP  - 191
VL  - 225
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-5/
DO  - 10.4064/sm225-2-5
LA  - en
ID  - 10_4064_sm225_2_5
ER  - 
%0 Journal Article
%A Itay Londner
%A Alexander Olevskiĭ
%T Riesz sequences and arithmetic progressions
%J Studia Mathematica
%D 2014
%P 183-191
%V 225
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-5/
%R 10.4064/sm225-2-5
%G en
%F 10_4064_sm225_2_5
Itay Londner; Alexander Olevskiĭ. Riesz sequences and arithmetic progressions. Studia Mathematica, Tome 225 (2014) no. 2, pp. 183-191. doi: 10.4064/sm225-2-5

Cité par Sources :