Riesz sequences and arithmetic progressions
Studia Mathematica, Tome 225 (2014) no. 2, pp. 183-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a set $\mathcal {S}$ of positive measure on the circle and a set $\varLambda $ of integers, one can ask whether $E(\varLambda ):=\{ e^{i\lambda t}\} _{\lambda \in \varLambda }$ is a Riesz sequence in $L^{2}(\mathcal {S})$. We consider this question in connection with some arithmetic properties of the set $\varLambda $. Improving a result of Bownik and Speegle (2006), we construct a set $\mathcal {S}$ such that $E(\varLambda )$ is never a Riesz sequence if $\varLambda $ contains an arithmetic progression of length $N$ and step $\ell =O(N^{1-\varepsilon })$ with $N$ arbitrarily large. On the other hand, we prove that every set $\mathcal {S}$ admits a Riesz sequence $E(\varLambda )$ such that $\varLambda $ does contain arithmetic progressions of length $N$ and step $\ell =O(N)$ with $N$ arbitrarily large.
Keywords:
given set mathcal positive measure circle set varlambda integers ask whether varlambda lambda lambda varlambda riesz sequence mathcal consider question connection arithmetic properties set nbsp varlambda improving result bownik speegle construct set mathcal varlambda never riesz sequence varlambda contains arithmetic progression length nbsp step ell varepsilon arbitrarily large other prove every set nbsp mathcal admits riesz sequence varlambda varlambda does contain arithmetic progressions length nbsp step ell arbitrarily large
Affiliations des auteurs :
Itay Londner 1 ; Alexander Olevskiĭ 1
@article{10_4064_sm225_2_5,
author = {Itay Londner and Alexander Olevski\u{i}},
title = {Riesz sequences and arithmetic progressions},
journal = {Studia Mathematica},
pages = {183--191},
publisher = {mathdoc},
volume = {225},
number = {2},
year = {2014},
doi = {10.4064/sm225-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-5/}
}
TY - JOUR AU - Itay Londner AU - Alexander Olevskiĭ TI - Riesz sequences and arithmetic progressions JO - Studia Mathematica PY - 2014 SP - 183 EP - 191 VL - 225 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-5/ DO - 10.4064/sm225-2-5 LA - en ID - 10_4064_sm225_2_5 ER -
Itay Londner; Alexander Olevskiĭ. Riesz sequences and arithmetic progressions. Studia Mathematica, Tome 225 (2014) no. 2, pp. 183-191. doi: 10.4064/sm225-2-5
Cité par Sources :