Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 225 (2014) no. 2, pp. 115-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel–Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel–Lizorkin spaces on the sphere, on the interval with Jacobi weights as well as on Lie groups, Riemannian manifolds, and in various other settings. The compactly supported frames are utilized to introduce atomic Hardy spaces $H^p_A$ in the general setting of this article.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
small perturbation method developed employed construct frames compactly supported elements small shrinking support besov triebel lizorkin spaces general setting doubling metric measure space presence nonnegative self adjoint operator whose heat kernel has gaussian localization markov property allows particular construct compactly supported frames besov triebel lizorkin spaces sphere interval jacobi weights lie groups riemannian manifolds various other settings compactly supported frames utilized introduce atomic hardy spaces general setting article
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              S. Dekel 1 ; G. Kerkyacharian 2 ; G. Kyriazis 3 ; P. Petrushev 4
@article{10_4064_sm225_2_2,
     author = {S. Dekel and G. Kerkyacharian and G. Kyriazis and P. Petrushev},
     title = {Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators},
     journal = {Studia Mathematica},
     pages = {115--163},
     publisher = {mathdoc},
     volume = {225},
     number = {2},
     year = {2014},
     doi = {10.4064/sm225-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-2/}
}
                      
                      
                    TY - JOUR AU - S. Dekel AU - G. Kerkyacharian AU - G. Kyriazis AU - P. Petrushev TI - Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators JO - Studia Mathematica PY - 2014 SP - 115 EP - 163 VL - 225 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-2/ DO - 10.4064/sm225-2-2 LA - en ID - 10_4064_sm225_2_2 ER -
%0 Journal Article %A S. Dekel %A G. Kerkyacharian %A G. Kyriazis %A P. Petrushev %T Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators %J Studia Mathematica %D 2014 %P 115-163 %V 225 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm225-2-2/ %R 10.4064/sm225-2-2 %G en %F 10_4064_sm225_2_2
S. Dekel; G. Kerkyacharian; G. Kyriazis; P. Petrushev. Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators. Studia Mathematica, Tome 225 (2014) no. 2, pp. 115-163. doi: 10.4064/sm225-2-2
Cité par Sources :
