Equivalences involving $(p,q)$-multi-norms
Studia Mathematica, Tome 225 (2014) no. 1, pp. 29-59
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider $(p,q)$-multi-norms and standard $t$-multi-norms based on Banach spaces of the form $L^r(\varOmega )$, and resolve some question about the mutual equivalence of two such multi-norms. We introduce a new multi-norm, called the $[p,q]$-concave multi-norm, and relate it to the standard $t$-multi-norm.
Keywords:
consider multi norms standard t multi norms based banach spaces form varomega resolve question about mutual equivalence multi norms introduce multi norm called concave multi norm relate standard t multi norm
Affiliations des auteurs :
Oscar Blasco 1 ; H. G. Dales 2 ; Hung Le Pham 3
@article{10_4064_sm225_1_3,
author = {Oscar Blasco and H. G. Dales and Hung Le Pham},
title = {Equivalences involving $(p,q)$-multi-norms},
journal = {Studia Mathematica},
pages = {29--59},
publisher = {mathdoc},
volume = {225},
number = {1},
year = {2014},
doi = {10.4064/sm225-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm225-1-3/}
}
TY - JOUR AU - Oscar Blasco AU - H. G. Dales AU - Hung Le Pham TI - Equivalences involving $(p,q)$-multi-norms JO - Studia Mathematica PY - 2014 SP - 29 EP - 59 VL - 225 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm225-1-3/ DO - 10.4064/sm225-1-3 LA - en ID - 10_4064_sm225_1_3 ER -
Oscar Blasco; H. G. Dales; Hung Le Pham. Equivalences involving $(p,q)$-multi-norms. Studia Mathematica, Tome 225 (2014) no. 1, pp. 29-59. doi: 10.4064/sm225-1-3
Cité par Sources :