An alternative polynomial Daugavet property
Studia Mathematica, Tome 224 (2014) no. 3, pp. 265-276
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We introduce a weaker version of the polynomial Daugavet property:
a Banach space $X$ has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial $P: X \rightarrow X$ satisfies
$$
\max_{\omega \in \mathbb T} \|{\rm Id} + \omega P\| = 1+\|P\|.
$$
We study the stability of the APDP by $c_0$-, $\ell_\infty$- and $\ell_1$-sums of Banach spaces.
As a consequence, we obtain examples of Banach spaces with the APDP, namely $L_\infty(\mu, X)$ and $C(K, X)$, where $X$ has the APDP.
Keywords:
introduce weaker version polynomial daugavet property banach space has alternative polynomial daugavet property apdp every weakly compact polynomial rightarrow satisfies max omega mathbb omega study stability apdp ell infty ell sums banach spaces consequence obtain examples banach spaces apdp namely infty where has apdp
Affiliations des auteurs :
Elisa R. Santos  1
@article{10_4064_sm224_3_4,
author = {Elisa R. Santos},
title = {An alternative polynomial {Daugavet} property},
journal = {Studia Mathematica},
pages = {265--276},
year = {2014},
volume = {224},
number = {3},
doi = {10.4064/sm224-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-4/}
}
Elisa R. Santos. An alternative polynomial Daugavet property. Studia Mathematica, Tome 224 (2014) no. 3, pp. 265-276. doi: 10.4064/sm224-3-4
Cité par Sources :