Heat kernel estimates for critical fractional diffusion operators
Studia Mathematica, Tome 224 (2014) no. 3, pp. 221-263
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct the heat kernel of the $1/2$-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.
Keywords:
construct heat kernel order laplacian perturbed first order gradient term lder spaces zero order potential term generalized kato class obtain sharp two sided estimates gradient estimate heat kernel where proof lower bound based probabilistic approach
Affiliations des auteurs :
Longjie Xie 1 ; Xicheng Zhang 1
@article{10_4064_sm224_3_3,
author = {Longjie Xie and Xicheng Zhang},
title = {Heat kernel estimates for critical fractional diffusion operators},
journal = {Studia Mathematica},
pages = {221--263},
publisher = {mathdoc},
volume = {224},
number = {3},
year = {2014},
doi = {10.4064/sm224-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-3/}
}
TY - JOUR AU - Longjie Xie AU - Xicheng Zhang TI - Heat kernel estimates for critical fractional diffusion operators JO - Studia Mathematica PY - 2014 SP - 221 EP - 263 VL - 224 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-3/ DO - 10.4064/sm224-3-3 LA - en ID - 10_4064_sm224_3_3 ER -
Longjie Xie; Xicheng Zhang. Heat kernel estimates for critical fractional diffusion operators. Studia Mathematica, Tome 224 (2014) no. 3, pp. 221-263. doi: 10.4064/sm224-3-3
Cité par Sources :