Maximal regularity of second-order evolution equations
with infinite delay in Banach spaces
Studia Mathematica, Tome 224 (2014) no. 3, pp. 199-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By using Fourier multiplier theorems we characterize the existence and uniqueness of periodic solutions for a class of second-order differential equations with infinite delay. We also establish maximal regularity results for the equations in various spaces. An example is provided to illustrate the applications of the results obtained.
Keywords:
using fourier multiplier theorems characterize existence uniqueness periodic solutions class second order differential equations infinite delay establish maximal regularity results equations various spaces example provided illustrate applications results obtained
Affiliations des auteurs :
Xianlong Fu 1 ; Ming Li 1
@article{10_4064_sm224_3_2,
author = {Xianlong Fu and Ming Li},
title = {Maximal regularity of second-order evolution equations
with infinite delay in {Banach} spaces},
journal = {Studia Mathematica},
pages = {199--219},
publisher = {mathdoc},
volume = {224},
number = {3},
year = {2014},
doi = {10.4064/sm224-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/}
}
TY - JOUR AU - Xianlong Fu AU - Ming Li TI - Maximal regularity of second-order evolution equations with infinite delay in Banach spaces JO - Studia Mathematica PY - 2014 SP - 199 EP - 219 VL - 224 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/ DO - 10.4064/sm224-3-2 LA - en ID - 10_4064_sm224_3_2 ER -
%0 Journal Article %A Xianlong Fu %A Ming Li %T Maximal regularity of second-order evolution equations with infinite delay in Banach spaces %J Studia Mathematica %D 2014 %P 199-219 %V 224 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/ %R 10.4064/sm224-3-2 %G en %F 10_4064_sm224_3_2
Xianlong Fu; Ming Li. Maximal regularity of second-order evolution equations with infinite delay in Banach spaces. Studia Mathematica, Tome 224 (2014) no. 3, pp. 199-219. doi: 10.4064/sm224-3-2
Cité par Sources :