By using Fourier multiplier theorems we characterize the existence and uniqueness of periodic solutions for a class of second-order differential equations with infinite delay. We also establish maximal regularity results for the equations in various spaces. An example is provided to illustrate the applications of the results obtained.
Keywords:
using fourier multiplier theorems characterize existence uniqueness periodic solutions class second order differential equations infinite delay establish maximal regularity results equations various spaces example provided illustrate applications results obtained
Affiliations des auteurs :
Xianlong Fu 
1
;
Ming Li 
1
1
Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University Shanghai, 200241, P.R. China
@article{10_4064_sm224_3_2,
author = {Xianlong Fu and Ming Li},
title = {Maximal regularity of second-order evolution equations
with infinite delay in {Banach} spaces},
journal = {Studia Mathematica},
pages = {199--219},
year = {2014},
volume = {224},
number = {3},
doi = {10.4064/sm224-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/}
}
TY - JOUR
AU - Xianlong Fu
AU - Ming Li
TI - Maximal regularity of second-order evolution equations
with infinite delay in Banach spaces
JO - Studia Mathematica
PY - 2014
SP - 199
EP - 219
VL - 224
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/
DO - 10.4064/sm224-3-2
LA - en
ID - 10_4064_sm224_3_2
ER -
%0 Journal Article
%A Xianlong Fu
%A Ming Li
%T Maximal regularity of second-order evolution equations
with infinite delay in Banach spaces
%J Studia Mathematica
%D 2014
%P 199-219
%V 224
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-2/
%R 10.4064/sm224-3-2
%G en
%F 10_4064_sm224_3_2
Xianlong Fu; Ming Li. Maximal regularity of second-order evolution equations
with infinite delay in Banach spaces. Studia Mathematica, Tome 224 (2014) no. 3, pp. 199-219. doi: 10.4064/sm224-3-2