Lyapunov theorem for $q$-concave Banach spaces
Studia Mathematica, Tome 224 (2014) no. 3, pp. 195-198
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A generalization of the Lyapunov convexity theorem is proved for a vector measure with values in a Banach space with unconditional basis, which is $q$-concave for some $q\infty $ and does not contain any isomorphic copy of $l_2.$
Keywords:
generalization lyapunov convexity theorem proved vector measure values banach space unconditional basis which q concave infty does contain isomorphic copy nbsp
Affiliations des auteurs :
Anna Novikova  1
@article{10_4064_sm224_3_1,
author = {Anna Novikova},
title = {Lyapunov theorem for $q$-concave {Banach} spaces},
journal = {Studia Mathematica},
pages = {195--198},
year = {2014},
volume = {224},
number = {3},
doi = {10.4064/sm224-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-1/}
}
Anna Novikova. Lyapunov theorem for $q$-concave Banach spaces. Studia Mathematica, Tome 224 (2014) no. 3, pp. 195-198. doi: 10.4064/sm224-3-1
Cité par Sources :