Lyapunov theorem for $q$-concave Banach spaces
Studia Mathematica, Tome 224 (2014) no. 3, pp. 195-198 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A generalization of the Lyapunov convexity theorem is proved for a vector measure with values in a Banach space with unconditional basis, which is $q$-concave for some $q\infty $ and does not contain any isomorphic copy of $l_2.$
DOI : 10.4064/sm224-3-1
Keywords: generalization lyapunov convexity theorem proved vector measure values banach space unconditional basis which q concave infty does contain isomorphic copy nbsp

Anna Novikova  1

1 Faculty of Mathematics and Computer Science The Weizmann Institute of Science POB 26, Rehovot 76100, Israel
@article{10_4064_sm224_3_1,
     author = {Anna Novikova},
     title = {Lyapunov theorem for $q$-concave {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {195--198},
     year = {2014},
     volume = {224},
     number = {3},
     doi = {10.4064/sm224-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-1/}
}
TY  - JOUR
AU  - Anna Novikova
TI  - Lyapunov theorem for $q$-concave Banach spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 195
EP  - 198
VL  - 224
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-1/
DO  - 10.4064/sm224-3-1
LA  - en
ID  - 10_4064_sm224_3_1
ER  - 
%0 Journal Article
%A Anna Novikova
%T Lyapunov theorem for $q$-concave Banach spaces
%J Studia Mathematica
%D 2014
%P 195-198
%V 224
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm224-3-1/
%R 10.4064/sm224-3-1
%G en
%F 10_4064_sm224_3_1
Anna Novikova. Lyapunov theorem for $q$-concave Banach spaces. Studia Mathematica, Tome 224 (2014) no. 3, pp. 195-198. doi: 10.4064/sm224-3-1

Cité par Sources :