Hessian determinants as elements of dual Sobolev spaces
Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190
In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
Keywords:
short note present integral formulas hessian determinant definitions hessian under minimal regularity assumptions hessian becomes continuous linear functional sobolev space
Affiliations des auteurs :
Teresa Radice  1
@article{10_4064_sm224_2_6,
author = {Teresa Radice},
title = {Hessian determinants as elements of dual {Sobolev} spaces},
journal = {Studia Mathematica},
pages = {183--190},
year = {2014},
volume = {224},
number = {2},
doi = {10.4064/sm224-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-6/}
}
Teresa Radice. Hessian determinants as elements of dual Sobolev spaces. Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190. doi: 10.4064/sm224-2-6
Cité par Sources :