Hessian determinants as elements of dual Sobolev spaces
Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
Keywords:
short note present integral formulas hessian determinant definitions hessian under minimal regularity assumptions hessian becomes continuous linear functional sobolev space
Affiliations des auteurs :
Teresa Radice  1
@article{10_4064_sm224_2_6,
author = {Teresa Radice},
title = {Hessian determinants as elements of dual {Sobolev} spaces},
journal = {Studia Mathematica},
pages = {183--190},
year = {2014},
volume = {224},
number = {2},
doi = {10.4064/sm224-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-6/}
}
Teresa Radice. Hessian determinants as elements of dual Sobolev spaces. Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190. doi: 10.4064/sm224-2-6
Cité par Sources :