Hessian determinants as elements of dual Sobolev spaces
Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
DOI : 10.4064/sm224-2-6
Keywords: short note present integral formulas hessian determinant definitions hessian under minimal regularity assumptions hessian becomes continuous linear functional sobolev space

Teresa Radice  1

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli” Complesso Universitario “Monte S. Angelo” Via Cintia Edificio T I-80126 Napoli, Italy
@article{10_4064_sm224_2_6,
     author = {Teresa Radice},
     title = {Hessian determinants as elements of dual {Sobolev} spaces},
     journal = {Studia Mathematica},
     pages = {183--190},
     year = {2014},
     volume = {224},
     number = {2},
     doi = {10.4064/sm224-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-6/}
}
TY  - JOUR
AU  - Teresa Radice
TI  - Hessian determinants as elements of dual Sobolev spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 183
EP  - 190
VL  - 224
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-6/
DO  - 10.4064/sm224-2-6
LA  - en
ID  - 10_4064_sm224_2_6
ER  - 
%0 Journal Article
%A Teresa Radice
%T Hessian determinants as elements of dual Sobolev spaces
%J Studia Mathematica
%D 2014
%P 183-190
%V 224
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-6/
%R 10.4064/sm224-2-6
%G en
%F 10_4064_sm224_2_6
Teresa Radice. Hessian determinants as elements of dual Sobolev spaces. Studia Mathematica, Tome 224 (2014) no. 2, pp. 183-190. doi: 10.4064/sm224-2-6

Cité par Sources :