Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds
Studia Mathematica, Tome 224 (2014) no. 2, pp. 153-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a complete connected noncompact Riemannian manifold $M$ with bounded geometry and spectral gap. We prove that the imaginary powers of the Laplacian and the Riesz transform are bounded from the Hardy space $X^1(M)$, introduced in previous work of the authors, to $L^1(M)$.
Keywords:
consider complete connected noncompact riemannian manifold bounded geometry spectral gap prove imaginary powers laplacian riesz transform bounded hardy space introduced previous work authors
Affiliations des auteurs :
Giancarlo Mauceri 1 ; Stefano Meda 2 ; Maria Vallarino 3
@article{10_4064_sm224_2_4,
author = {Giancarlo Mauceri and Stefano Meda and Maria Vallarino},
title = {Sharp endpoint results for imaginary powers and {Riesz} transforms on certain noncompact manifolds},
journal = {Studia Mathematica},
pages = {153--168},
publisher = {mathdoc},
volume = {224},
number = {2},
year = {2014},
doi = {10.4064/sm224-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-4/}
}
TY - JOUR AU - Giancarlo Mauceri AU - Stefano Meda AU - Maria Vallarino TI - Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds JO - Studia Mathematica PY - 2014 SP - 153 EP - 168 VL - 224 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-4/ DO - 10.4064/sm224-2-4 LA - en ID - 10_4064_sm224_2_4 ER -
%0 Journal Article %A Giancarlo Mauceri %A Stefano Meda %A Maria Vallarino %T Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds %J Studia Mathematica %D 2014 %P 153-168 %V 224 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm224-2-4/ %R 10.4064/sm224-2-4 %G en %F 10_4064_sm224_2_4
Giancarlo Mauceri; Stefano Meda; Maria Vallarino. Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds. Studia Mathematica, Tome 224 (2014) no. 2, pp. 153-168. doi: 10.4064/sm224-2-4
Cité par Sources :