Given an infinite-dimensional Banach space $Z$ (substituting the Hilbert space $\ell _2$), the $s$-number sequence of $Z$-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with $Z$-Weyl numbers—a problem originally posed by
A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue distribution of operators between Banach spaces.
Keywords:
given infinite dimensional banach space substituting hilbert space ell s number sequence z weyl numbers generated approximation numbers according pattern classical weyl numbers compare weyl numbers z weyl numbers problem originally posed nbsp pietsch recover result hinrichs first author showing weyl numbers sense minimal emphasizes outstanding role weyl numbers within theory eigenvalue distribution operators between banach spaces
@article{10_4064_sm223_3_4,
author = {Bernd Carl and Andreas Defant and Doris Planer},
title = {Weyl numbers versus $Z${-Weyl} numbers},
journal = {Studia Mathematica},
pages = {233--250},
year = {2014},
volume = {223},
number = {3},
doi = {10.4064/sm223-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-4/}
}
TY - JOUR
AU - Bernd Carl
AU - Andreas Defant
AU - Doris Planer
TI - Weyl numbers versus $Z$-Weyl numbers
JO - Studia Mathematica
PY - 2014
SP - 233
EP - 250
VL - 223
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-4/
DO - 10.4064/sm223-3-4
LA - en
ID - 10_4064_sm223_3_4
ER -
%0 Journal Article
%A Bernd Carl
%A Andreas Defant
%A Doris Planer
%T Weyl numbers versus $Z$-Weyl numbers
%J Studia Mathematica
%D 2014
%P 233-250
%V 223
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-4/
%R 10.4064/sm223-3-4
%G en
%F 10_4064_sm223_3_4
Bernd Carl; Andreas Defant; Doris Planer. Weyl numbers versus $Z$-Weyl numbers. Studia Mathematica, Tome 223 (2014) no. 3, pp. 233-250. doi: 10.4064/sm223-3-4