Submultiplicative functions and operator inequalities
Studia Mathematica, Tome 223 (2014) no. 3, pp. 217-231 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $T:C^1(\mathbb{R}) \to C(\mathbb{R})$ be an operator satisfying the “chain rule inequality” \[ T(f \circ g) \le (Tf) \circ g \cdot Tg, \quad f,g \in C^1(\mathbb{R}). \] Imposing a weak continuity and a non-degeneracy condition on $T$, we determine the form of all maps $T$ satisfying this inequality together with $T(-\mathop{\rm Id}\nolimits)(0) 0$. They have the form \[ Tf = \begin{cases}(H \circ f / H) f'^p, f' \ge 0,\\ -A (H \circ f / H ) |f'|^p, f' 0, \end{cases} \] with $p>0$, $H \in C(\mathbb{R})$, $A \ge 1$. For $A=1$, these are just the solutions of the chain rule operator equation. To prove this, we characterize the submultiplicative, measurable functions $K$ on $\mathbb{R}$ which are continuous at $0$ and $1$ and satisfy $K(-1) 0 K(1)$. Any such map $K$ has the form \[ K(\alpha) = \begin{cases} \alpha^p, \alpha \ge 0,\\ -A |\alpha|^p,\alpha 0,\end{cases} \] with $A \ge 1$ and $p>0$. Corresponding statements hold in the supermultiplicative case with $0 A \le 1$.
DOI : 10.4064/sm223-3-3
Keywords: mathbb mathbb operator satisfying chain rule inequality circ circ cdot quad mathbb imposing weak continuity non degeneracy condition determine form maps satisfying inequality together mathop nolimits have form begin cases circ a circ end cases mathbb these just solutions chain rule operator equation prove characterize submultiplicative measurable functions mathbb which continuous satisfy map has form alpha begin cases alpha alpha a alpha alpha end cases corresponding statements supermultiplicative

Hermann König  1   ; Vitali Milman  2

1 Mathematisches Seminar Universität Kiel 24098 Kiel, Germany
2 School of Mathematical Sciences Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel
@article{10_4064_sm223_3_3,
     author = {Hermann K\"onig and Vitali Milman},
     title = {Submultiplicative functions and operator inequalities},
     journal = {Studia Mathematica},
     pages = {217--231},
     year = {2014},
     volume = {223},
     number = {3},
     doi = {10.4064/sm223-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-3/}
}
TY  - JOUR
AU  - Hermann König
AU  - Vitali Milman
TI  - Submultiplicative functions and operator inequalities
JO  - Studia Mathematica
PY  - 2014
SP  - 217
EP  - 231
VL  - 223
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-3/
DO  - 10.4064/sm223-3-3
LA  - en
ID  - 10_4064_sm223_3_3
ER  - 
%0 Journal Article
%A Hermann König
%A Vitali Milman
%T Submultiplicative functions and operator inequalities
%J Studia Mathematica
%D 2014
%P 217-231
%V 223
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-3/
%R 10.4064/sm223-3-3
%G en
%F 10_4064_sm223_3_3
Hermann König; Vitali Milman. Submultiplicative functions and operator inequalities. Studia Mathematica, Tome 223 (2014) no. 3, pp. 217-231. doi: 10.4064/sm223-3-3

Cité par Sources :