On the randomized complexity of Banach space valued integration
Studia Mathematica, Tome 223 (2014) no. 3, pp. 205-215 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the complexity of Banach space valued integration in the randomized setting. We are concerned with $r$ times continuously differentiable functions on the $d$-dimensional unit cube $Q$, with values in a Banach space $X$, and investigate the relation of the optimal convergence rate to the geometry of $X$. It turns out that the $n$th minimal errors are bounded by $cn^{-r/d-1+1/p}$ if and only if $X$ is of equal norm type $p$.
DOI : 10.4064/sm223-3-2
Keywords: study complexity banach space valued integration randomized setting concerned times continuously differentiable functions d dimensional unit cube values banach space investigate relation optimal convergence rate geometry turns out nth minimal errors bounded r d only equal norm type nbsp

Stefan Heinrich  1   ; Aicke Hinrichs  2

1 Department of Computer Science University of Kaiserslautern D-67653 Kaiserslautern, Germany
2 Institute of Analysis Johannes Kepler University Linz Altenberger Str. 69 A-4040 Linz, Austria
@article{10_4064_sm223_3_2,
     author = {Stefan Heinrich and Aicke Hinrichs},
     title = {On the randomized complexity of
 {Banach} space valued integration},
     journal = {Studia Mathematica},
     pages = {205--215},
     year = {2014},
     volume = {223},
     number = {3},
     doi = {10.4064/sm223-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/}
}
TY  - JOUR
AU  - Stefan Heinrich
AU  - Aicke Hinrichs
TI  - On the randomized complexity of
 Banach space valued integration
JO  - Studia Mathematica
PY  - 2014
SP  - 205
EP  - 215
VL  - 223
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/
DO  - 10.4064/sm223-3-2
LA  - en
ID  - 10_4064_sm223_3_2
ER  - 
%0 Journal Article
%A Stefan Heinrich
%A Aicke Hinrichs
%T On the randomized complexity of
 Banach space valued integration
%J Studia Mathematica
%D 2014
%P 205-215
%V 223
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/
%R 10.4064/sm223-3-2
%G en
%F 10_4064_sm223_3_2
Stefan Heinrich; Aicke Hinrichs. On the randomized complexity of
 Banach space valued integration. Studia Mathematica, Tome 223 (2014) no. 3, pp. 205-215. doi: 10.4064/sm223-3-2

Cité par Sources :