1Department of Computer Science University of Kaiserslautern D-67653 Kaiserslautern, Germany 2Institute of Analysis Johannes Kepler University Linz Altenberger Str. 69 A-4040 Linz, Austria
Studia Mathematica, Tome 223 (2014) no. 3, pp. 205-215
We study the complexity of Banach space valued integration in the randomized setting. We are concerned with $r$ times continuously differentiable functions on the $d$-dimensional unit cube $Q$, with values in a Banach space $X$, and investigate the relation of the optimal convergence rate to the geometry of $X$. It turns out that the $n$th minimal errors are bounded by $cn^{-r/d-1+1/p}$ if and only if $X$ is of equal norm
type $p$.
Keywords:
study complexity banach space valued integration randomized setting concerned times continuously differentiable functions d dimensional unit cube values banach space investigate relation optimal convergence rate geometry turns out nth minimal errors bounded r d only equal norm type nbsp
Affiliations des auteurs :
Stefan Heinrich 
1
;
Aicke Hinrichs 
2
1
Department of Computer Science University of Kaiserslautern D-67653 Kaiserslautern, Germany
2
Institute of Analysis Johannes Kepler University Linz Altenberger Str. 69 A-4040 Linz, Austria
@article{10_4064_sm223_3_2,
author = {Stefan Heinrich and Aicke Hinrichs},
title = {On the randomized complexity of
{Banach} space valued integration},
journal = {Studia Mathematica},
pages = {205--215},
year = {2014},
volume = {223},
number = {3},
doi = {10.4064/sm223-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/}
}
TY - JOUR
AU - Stefan Heinrich
AU - Aicke Hinrichs
TI - On the randomized complexity of
Banach space valued integration
JO - Studia Mathematica
PY - 2014
SP - 205
EP - 215
VL - 223
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/
DO - 10.4064/sm223-3-2
LA - en
ID - 10_4064_sm223_3_2
ER -
%0 Journal Article
%A Stefan Heinrich
%A Aicke Hinrichs
%T On the randomized complexity of
Banach space valued integration
%J Studia Mathematica
%D 2014
%P 205-215
%V 223
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-2/
%R 10.4064/sm223-3-2
%G en
%F 10_4064_sm223_3_2
Stefan Heinrich; Aicke Hinrichs. On the randomized complexity of
Banach space valued integration. Studia Mathematica, Tome 223 (2014) no. 3, pp. 205-215. doi: 10.4064/sm223-3-2