This paper deals with Besov spaces of logarithmic smoothness $B_{p,r}^{0,b}$ formed by periodic functions. We study embeddings of $B_{p,r}^{0,b}$ into Lorentz–Zygmund
spaces $L_{p,q}(\log L)_{\beta }$. Our techniques rely on the approximation structure of $B_{p,r}^{0,b}$, Nikol'skiĭ type inequalities, extrapolation properties of $L_{p,q}(\log L)_{\beta }$ and interpolation.
@article{10_4064_sm223_3_1,
author = {Fernando Cobos and \'Oscar Dom{\'\i}nguez},
title = {Embeddings of {Besov} spaces of logarithmic smoothness},
journal = {Studia Mathematica},
pages = {193--204},
year = {2014},
volume = {223},
number = {3},
doi = {10.4064/sm223-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-1/}
}
TY - JOUR
AU - Fernando Cobos
AU - Óscar Domínguez
TI - Embeddings of Besov spaces of logarithmic smoothness
JO - Studia Mathematica
PY - 2014
SP - 193
EP - 204
VL - 223
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-1/
DO - 10.4064/sm223-3-1
LA - en
ID - 10_4064_sm223_3_1
ER -
%0 Journal Article
%A Fernando Cobos
%A Óscar Domínguez
%T Embeddings of Besov spaces of logarithmic smoothness
%J Studia Mathematica
%D 2014
%P 193-204
%V 223
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-3-1/
%R 10.4064/sm223-3-1
%G en
%F 10_4064_sm223_3_1
Fernando Cobos; Óscar Domínguez. Embeddings of Besov spaces of logarithmic smoothness. Studia Mathematica, Tome 223 (2014) no. 3, pp. 193-204. doi: 10.4064/sm223-3-1