On the structure of the set of higher order spreading models
Studia Mathematica, Tome 223 (2014) no. 2, pp. 149-173 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We generalize some results concerning the classical notion of a spreading model to spreading models of order $\xi $. Among other results, we prove that the set $SM_\xi ^w(X)$ of $\xi $-order spreading models of a Banach space $X$ generated by subordinated weakly null $\mathcal {F}$-sequences endowed with the pre-partial order of domination is a semilattice. Moreover, if $SM_\xi ^w(X)$ contains an increasing sequence of length $\omega $ then it contains an increasing sequence of length $\omega _1$. Finally, if $SM_\xi ^w(X)$ is uncountable, then it contains an antichain of size continuum.
DOI : 10.4064/sm223-2-3
Keywords: generalize results concerning classical notion spreading model spreading models order among other results prove set order spreading models banach space generated subordinated weakly null mathcal sequences endowed pre partial order domination semilattice moreover contains increasing sequence length omega contains increasing sequence length omega finally uncountable contains antichain size continuum

Bünyamin Sarı  1   ; Konstantinos Tyros  2

1 Department of Mathematics University of North Texas Denton, TX 76203–5017, U.S.A.
2 Mathematics Institute University of Warwick Coventry, CV4 7AL, UK
@article{10_4064_sm223_2_3,
     author = {B\"unyamin Sar{\i} and Konstantinos Tyros},
     title = {On the structure of the set
 of higher order spreading models},
     journal = {Studia Mathematica},
     pages = {149--173},
     year = {2014},
     volume = {223},
     number = {2},
     doi = {10.4064/sm223-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/}
}
TY  - JOUR
AU  - Bünyamin Sarı
AU  - Konstantinos Tyros
TI  - On the structure of the set
 of higher order spreading models
JO  - Studia Mathematica
PY  - 2014
SP  - 149
EP  - 173
VL  - 223
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/
DO  - 10.4064/sm223-2-3
LA  - en
ID  - 10_4064_sm223_2_3
ER  - 
%0 Journal Article
%A Bünyamin Sarı
%A Konstantinos Tyros
%T On the structure of the set
 of higher order spreading models
%J Studia Mathematica
%D 2014
%P 149-173
%V 223
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/
%R 10.4064/sm223-2-3
%G en
%F 10_4064_sm223_2_3
Bünyamin Sarı; Konstantinos Tyros. On the structure of the set
 of higher order spreading models. Studia Mathematica, Tome 223 (2014) no. 2, pp. 149-173. doi: 10.4064/sm223-2-3

Cité par Sources :