1Department of Mathematics University of North Texas Denton, TX 76203–5017, U.S.A. 2Mathematics Institute University of Warwick Coventry, CV4 7AL, UK
Studia Mathematica, Tome 223 (2014) no. 2, pp. 149-173
We generalize some results concerning the classical notion of a spreading model to spreading models of order $\xi $. Among other results, we prove that the set $SM_\xi ^w(X)$ of $\xi $-order spreading models of a Banach space $X$ generated by subordinated weakly null $\mathcal {F}$-sequences endowed with the pre-partial order of domination is a semilattice. Moreover, if $SM_\xi ^w(X)$ contains an increasing sequence of length $\omega $ then it contains an increasing sequence of length $\omega _1$. Finally, if $SM_\xi ^w(X)$ is uncountable, then it contains an antichain of size continuum.
1
Department of Mathematics University of North Texas Denton, TX 76203–5017, U.S.A.
2
Mathematics Institute University of Warwick Coventry, CV4 7AL, UK
@article{10_4064_sm223_2_3,
author = {B\"unyamin Sar{\i} and Konstantinos Tyros},
title = {On the structure of the set
of higher order spreading models},
journal = {Studia Mathematica},
pages = {149--173},
year = {2014},
volume = {223},
number = {2},
doi = {10.4064/sm223-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/}
}
TY - JOUR
AU - Bünyamin Sarı
AU - Konstantinos Tyros
TI - On the structure of the set
of higher order spreading models
JO - Studia Mathematica
PY - 2014
SP - 149
EP - 173
VL - 223
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/
DO - 10.4064/sm223-2-3
LA - en
ID - 10_4064_sm223_2_3
ER -
%0 Journal Article
%A Bünyamin Sarı
%A Konstantinos Tyros
%T On the structure of the set
of higher order spreading models
%J Studia Mathematica
%D 2014
%P 149-173
%V 223
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-3/
%R 10.4064/sm223-2-3
%G en
%F 10_4064_sm223_2_3
Bünyamin Sarı; Konstantinos Tyros. On the structure of the set
of higher order spreading models. Studia Mathematica, Tome 223 (2014) no. 2, pp. 149-173. doi: 10.4064/sm223-2-3