Dual spaces and translation invariant means on group von Neumann algebras
Studia Mathematica, Tome 223 (2014) no. 2, pp. 97-121 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $G$ be a locally compact group. Its dual space, $G^*$, is the set of all extreme points of the set of normalized continuous positive definite functions of $G$. In the early 1970s, Granirer and Rudin proved independently that if $G$ is amenable as discrete, then $G$ is discrete if and only if all the translation invariant means on $L^\infty (G)$ are topologically invariant. In this paper, we define and study $G^*$-translation operators on ${\rm VN}(G)$ via $G^*$ and investigate the problem of the existence of $G^*$-translation invariant means on ${\rm VN}(G)$ which are not topologically invariant. The general properties of $G^*$ are also investigated.
DOI : 10.4064/sm223-2-1
Keywords: locally compact group its dual space * set extreme points set normalized continuous positive definite functions early granirer rudin proved independently amenable discrete discrete only translation invariant means infty topologically invariant paper define study * translation operators via * investigate problem existence * translation invariant means which topologically invariant general properties * investigated

Michael Yin-Hei Cheng  1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON N2L 3G1, Canada
@article{10_4064_sm223_2_1,
     author = {Michael Yin-Hei Cheng},
     title = {Dual spaces and translation invariant means
 on group von {Neumann} algebras},
     journal = {Studia Mathematica},
     pages = {97--121},
     year = {2014},
     volume = {223},
     number = {2},
     doi = {10.4064/sm223-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-1/}
}
TY  - JOUR
AU  - Michael Yin-Hei Cheng
TI  - Dual spaces and translation invariant means
 on group von Neumann algebras
JO  - Studia Mathematica
PY  - 2014
SP  - 97
EP  - 121
VL  - 223
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-1/
DO  - 10.4064/sm223-2-1
LA  - en
ID  - 10_4064_sm223_2_1
ER  - 
%0 Journal Article
%A Michael Yin-Hei Cheng
%T Dual spaces and translation invariant means
 on group von Neumann algebras
%J Studia Mathematica
%D 2014
%P 97-121
%V 223
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-2-1/
%R 10.4064/sm223-2-1
%G en
%F 10_4064_sm223_2_1
Michael Yin-Hei Cheng. Dual spaces and translation invariant means
 on group von Neumann algebras. Studia Mathematica, Tome 223 (2014) no. 2, pp. 97-121. doi: 10.4064/sm223-2-1

Cité par Sources :