Optimal embeddings of critical Sobolev–Lorentz–Zygmund spaces
Studia Mathematica, Tome 223 (2014) no. 1, pp. 77-95
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We establish the embedding of the critical Sobolev–Lorentz–Zygmund space $H^{{n}/{p}}_{p,q,\lambda _1,\ldots ,\lambda _m}(\mathbb R^n)$ into the generalized Morrey space ${\cal M}_{\varPhi ,r}(\mathbb R^n)$ with an optimal Young function $\varPhi $. As an application, we obtain the almost Lipschitz continuity for functions in $H^{{n}/{p}+1}_{p,q,\lambda _1,\ldots ,\lambda _m}(\mathbb R^n)$. O'Neil's inequality and its reverse play an essential role in the proofs of the main theorems.
DOI : 10.4064/sm223-1-5
Keywords: establish embedding critical sobolev lorentz zygmund space lambda ldots lambda mathbb generalized morrey space cal varphi mathbb optimal young function varphi application obtain almost lipschitz continuity functions lambda ldots lambda mathbb oneils inequality its reverse play essential role proofs main theorems

Hidemitsu Wadade  1

1 Faculty of Mechanical Engineering Institute of Science and Engineering Kanazawa University Kakuma-machi, Kanazawa-shi Ishikawa-ken, 920-1192, Japan
@article{10_4064_sm223_1_5,
     author = {Hidemitsu Wadade},
     title = {Optimal embeddings of
 critical {Sobolev{\textendash}Lorentz{\textendash}Zygmund} spaces},
     journal = {Studia Mathematica},
     pages = {77--95},
     year = {2014},
     volume = {223},
     number = {1},
     doi = {10.4064/sm223-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-5/}
}
TY  - JOUR
AU  - Hidemitsu Wadade
TI  - Optimal embeddings of
 critical Sobolev–Lorentz–Zygmund spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 77
EP  - 95
VL  - 223
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-5/
DO  - 10.4064/sm223-1-5
LA  - en
ID  - 10_4064_sm223_1_5
ER  - 
%0 Journal Article
%A Hidemitsu Wadade
%T Optimal embeddings of
 critical Sobolev–Lorentz–Zygmund spaces
%J Studia Mathematica
%D 2014
%P 77-95
%V 223
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-5/
%R 10.4064/sm223-1-5
%G en
%F 10_4064_sm223_1_5
Hidemitsu Wadade. Optimal embeddings of
 critical Sobolev–Lorentz–Zygmund spaces. Studia Mathematica, Tome 223 (2014) no. 1, pp. 77-95. doi: 10.4064/sm223-1-5

Cité par Sources :