Optimal embeddings of
critical Sobolev–Lorentz–Zygmund spaces
Studia Mathematica, Tome 223 (2014) no. 1, pp. 77-95
We establish the embedding of the critical Sobolev–Lorentz–Zygmund space $H^{{n}/{p}}_{p,q,\lambda _1,\ldots ,\lambda _m}(\mathbb R^n)$ into the generalized Morrey space ${\cal M}_{\varPhi ,r}(\mathbb R^n)$ with an optimal Young function $\varPhi $. As an application, we obtain the almost Lipschitz continuity for functions in $H^{{n}/{p}+1}_{p,q,\lambda _1,\ldots ,\lambda _m}(\mathbb R^n)$. O'Neil's inequality and its reverse play an essential role in the proofs of the main theorems.
Keywords:
establish embedding critical sobolev lorentz zygmund space lambda ldots lambda mathbb generalized morrey space cal varphi mathbb optimal young function varphi application obtain almost lipschitz continuity functions lambda ldots lambda mathbb oneils inequality its reverse play essential role proofs main theorems
Affiliations des auteurs :
Hidemitsu Wadade  1
@article{10_4064_sm223_1_5,
author = {Hidemitsu Wadade},
title = {Optimal embeddings of
critical {Sobolev{\textendash}Lorentz{\textendash}Zygmund} spaces},
journal = {Studia Mathematica},
pages = {77--95},
year = {2014},
volume = {223},
number = {1},
doi = {10.4064/sm223-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-5/}
}
Hidemitsu Wadade. Optimal embeddings of critical Sobolev–Lorentz–Zygmund spaces. Studia Mathematica, Tome 223 (2014) no. 1, pp. 77-95. doi: 10.4064/sm223-1-5
Cité par Sources :