The study of quasianalytic contractions, motivated by the hyperinvariant subspace problem, is continued. Special emphasis is put on the case when the contraction is asymptotically cyclic. New properties of the functional commutant are explored. Analytic contractions and bilateral weighted shifts are discussed as illuminating examples.
@article{10_4064_sm223_1_4,
author = {L\'aszl\'o K\'erchy and Attila Szalai},
title = {Asymptotically cyclic quasianalytic contractions},
journal = {Studia Mathematica},
pages = {53--75},
year = {2014},
volume = {223},
number = {1},
doi = {10.4064/sm223-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-4/}
}
TY - JOUR
AU - László Kérchy
AU - Attila Szalai
TI - Asymptotically cyclic quasianalytic contractions
JO - Studia Mathematica
PY - 2014
SP - 53
EP - 75
VL - 223
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-4/
DO - 10.4064/sm223-1-4
LA - en
ID - 10_4064_sm223_1_4
ER -
%0 Journal Article
%A László Kérchy
%A Attila Szalai
%T Asymptotically cyclic quasianalytic contractions
%J Studia Mathematica
%D 2014
%P 53-75
%V 223
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm223-1-4/
%R 10.4064/sm223-1-4
%G en
%F 10_4064_sm223_1_4
László Kérchy; Attila Szalai. Asymptotically cyclic quasianalytic contractions. Studia Mathematica, Tome 223 (2014) no. 1, pp. 53-75. doi: 10.4064/sm223-1-4