Dual spaces to Orlicz–Lorentz spaces
Studia Mathematica, Tome 222 (2014) no. 3, pp. 229-261
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For an Orlicz function $\varphi $ and a decreasing weight $w$, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz–Lorentz function space $\varLambda _{\varphi ,w}$ or the sequence space $\lambda _{\varphi ,w}$, equipped with either the Luxemburg or Amemiya norms. The first description is via the modular
$\inf\{\int \varphi _*(f^*/|g|)|g|: g\prec w\}$, where $f^*$ is the decreasing rearrangement of $f$,
$\prec $ denotes submajorization, and $\varphi _*$ is the complementary function to $\varphi $. The second description is in terms of the modular $\int _I \varphi _*((f^*)^0/w)w$, where $(f^*)^0$ is Halperin's level function of $f^*$ with respect to $w$. That these two descriptions are equivalent results from the identity
$\inf\{\int \psi (f^*/|g|)|g|: g\prec w\}=\int _I \psi ((f^*)^0/w)w$, valid for any measurable function $f$ and any Orlicz function $\psi $. An analogous identity and dual representations are also presented for sequence spaces.
Mots-clés :
orlicz function varphi decreasing weight intrinsic exact descriptions presented norm dual orlicz lorentz function space varlambda varphi sequence space lambda varphi equipped either luxemburg amemiya norms first description via modular inf int varphi * * prec where * decreasing rearrangement nbsp prec denotes submajorization varphi * complementary function nbsp varphi second description terms modular int varphi * * where * halperins level function * respect nbsp these descriptions equivalent results identity inf int psi * prec int psi * valid measurable function orlicz function nbsp psi analogous identity dual representations presented sequence spaces
Affiliations des auteurs :
Anna Kamińska 1 ; Karol Leśnik 2 ; Yves Raynaud 3
@article{10_4064_sm222_3_3,
author = {Anna Kami\'nska and Karol Le\'snik and Yves Raynaud},
title = {Dual spaces to {Orlicz{\textendash}Lorentz} spaces},
journal = {Studia Mathematica},
pages = {229--261},
publisher = {mathdoc},
volume = {222},
number = {3},
year = {2014},
doi = {10.4064/sm222-3-3},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-3/}
}
TY - JOUR AU - Anna Kamińska AU - Karol Leśnik AU - Yves Raynaud TI - Dual spaces to Orlicz–Lorentz spaces JO - Studia Mathematica PY - 2014 SP - 229 EP - 261 VL - 222 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-3/ DO - 10.4064/sm222-3-3 LA - pl ID - 10_4064_sm222_3_3 ER -
Anna Kamińska; Karol Leśnik; Yves Raynaud. Dual spaces to Orlicz–Lorentz spaces. Studia Mathematica, Tome 222 (2014) no. 3, pp. 229-261. doi: 10.4064/sm222-3-3
Cité par Sources :