A lower bound in the law of the iterated logarithm for general lacunary series
Studia Mathematica, Tome 222 (2014) no. 3, pp. 207-228 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove a lower bound in a law of the iterated logarithm for sums of the form $\sum _{k=1}^N a_k f(n_k x+c_k)$ where $f$ satisfies certain conditions and the $n_k$ satisfy the Hadamard gap condition $n_{k+1}/n_k\geq q >1. $
DOI : 10.4064/sm222-3-2
Keywords: prove lower bound law iterated logarithm sums form sum f c where satisfies certain conditions satisfy hadamard gap condition geq

Charles N. Moore  1   ; Xiaojing Zhang  2

1 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A. and Department of Mathematics Washington State University Pullman, WA 99164, U.S.A.
2 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
@article{10_4064_sm222_3_2,
     author = {Charles N. Moore and Xiaojing Zhang},
     title = {A lower bound in the law of the iterated logarithm for general lacunary series},
     journal = {Studia Mathematica},
     pages = {207--228},
     year = {2014},
     volume = {222},
     number = {3},
     doi = {10.4064/sm222-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/}
}
TY  - JOUR
AU  - Charles N. Moore
AU  - Xiaojing Zhang
TI  - A lower bound in the law of the iterated logarithm for general lacunary series
JO  - Studia Mathematica
PY  - 2014
SP  - 207
EP  - 228
VL  - 222
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/
DO  - 10.4064/sm222-3-2
LA  - en
ID  - 10_4064_sm222_3_2
ER  - 
%0 Journal Article
%A Charles N. Moore
%A Xiaojing Zhang
%T A lower bound in the law of the iterated logarithm for general lacunary series
%J Studia Mathematica
%D 2014
%P 207-228
%V 222
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/
%R 10.4064/sm222-3-2
%G en
%F 10_4064_sm222_3_2
Charles N. Moore; Xiaojing Zhang. A lower bound in the law of the iterated logarithm for general lacunary series. Studia Mathematica, Tome 222 (2014) no. 3, pp. 207-228. doi: 10.4064/sm222-3-2

Cité par Sources :