1Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A. and Department of Mathematics Washington State University Pullman, WA 99164, U.S.A. 2Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
Studia Mathematica, Tome 222 (2014) no. 3, pp. 207-228
We prove a lower bound in a law of the iterated logarithm for sums of the form $\sum _{k=1}^N a_k f(n_k x+c_k)$ where $f$ satisfies certain conditions and the $n_k$ satisfy the Hadamard gap condition $n_{k+1}/n_k\geq q >1. $
Keywords:
prove lower bound law iterated logarithm sums form sum f c where satisfies certain conditions satisfy hadamard gap condition geq
Affiliations des auteurs :
Charles N. Moore 
1
;
Xiaojing Zhang 
2
1
Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A. and Department of Mathematics Washington State University Pullman, WA 99164, U.S.A.
2
Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
@article{10_4064_sm222_3_2,
author = {Charles N. Moore and Xiaojing Zhang},
title = {A lower bound in the law of the iterated logarithm for general lacunary series},
journal = {Studia Mathematica},
pages = {207--228},
year = {2014},
volume = {222},
number = {3},
doi = {10.4064/sm222-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/}
}
TY - JOUR
AU - Charles N. Moore
AU - Xiaojing Zhang
TI - A lower bound in the law of the iterated logarithm for general lacunary series
JO - Studia Mathematica
PY - 2014
SP - 207
EP - 228
VL - 222
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/
DO - 10.4064/sm222-3-2
LA - en
ID - 10_4064_sm222_3_2
ER -
%0 Journal Article
%A Charles N. Moore
%A Xiaojing Zhang
%T A lower bound in the law of the iterated logarithm for general lacunary series
%J Studia Mathematica
%D 2014
%P 207-228
%V 222
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm222-3-2/
%R 10.4064/sm222-3-2
%G en
%F 10_4064_sm222_3_2
Charles N. Moore; Xiaojing Zhang. A lower bound in the law of the iterated logarithm for general lacunary series. Studia Mathematica, Tome 222 (2014) no. 3, pp. 207-228. doi: 10.4064/sm222-3-2