Simultaneous solutions of operator Sylvester equations
Studia Mathematica, Tome 222 (2014) no. 1, pp. 87-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider simultaneous solutions of operator Sylvester equations $A_iX-XB_i=C_i \ (1\le i \le k)$, where $(A_1,\ldots ,A_k)$ and $(B_1,\ldots ,B_k)$ are commuting $k$-tuples of bounded linear operators on Banach spaces ${\mathcal E}$ and ${\mathcal F}$, respectively, and $(C_1,\ldots ,C_k)$ is a (compatible) $k$-tuple of bounded linear operators from ${\mathcal F}$ to ${\mathcal E}$, and prove that if the joint Taylor spectra of $(A_1,\ldots ,A_k)$ and $(B_1,\ldots ,B_k)$ do not intersect, then this system of Sylvester equations has a unique simultaneous solution.
Keywords:
consider simultaneous solutions operator sylvester equations ix xb where ldots ldots commuting k tuples bounded linear operators banach spaces mathcal mathcal respectively ldots compatible k tuple bounded linear operators mathcal mathcal prove joint taylor spectra ldots ldots intersect system sylvester equations has unique simultaneous solution
Affiliations des auteurs :
Sang-Gu Lee 1 ; Quoc-Phong Vu 2
@article{10_4064_sm222_1_6,
author = {Sang-Gu Lee and Quoc-Phong Vu},
title = {Simultaneous solutions of operator {Sylvester} equations},
journal = {Studia Mathematica},
pages = {87--96},
publisher = {mathdoc},
volume = {222},
number = {1},
year = {2014},
doi = {10.4064/sm222-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-6/}
}
TY - JOUR AU - Sang-Gu Lee AU - Quoc-Phong Vu TI - Simultaneous solutions of operator Sylvester equations JO - Studia Mathematica PY - 2014 SP - 87 EP - 96 VL - 222 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-6/ DO - 10.4064/sm222-1-6 LA - en ID - 10_4064_sm222_1_6 ER -
Sang-Gu Lee; Quoc-Phong Vu. Simultaneous solutions of operator Sylvester equations. Studia Mathematica, Tome 222 (2014) no. 1, pp. 87-96. doi: 10.4064/sm222-1-6
Cité par Sources :