Unconditionality of orthogonal spline systems in $L^{p}$
Studia Mathematica, Tome 222 (2014) no. 1, pp. 51-86
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that given any natural number $k$ and any dense point sequence $(t_n)$, the corresponding orthonormal spline system is an unconditional basis in reflexive $L^p$.
Keywords:
prove given natural number dense point sequence corresponding orthonormal spline system unconditional basis reflexive nbsp
Affiliations des auteurs :
Markus Passenbrunner 1
@article{10_4064_sm222_1_5,
author = {Markus Passenbrunner},
title = {Unconditionality of orthogonal spline systems in $L^{p}$},
journal = {Studia Mathematica},
pages = {51--86},
publisher = {mathdoc},
volume = {222},
number = {1},
year = {2014},
doi = {10.4064/sm222-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-5/}
}
Markus Passenbrunner. Unconditionality of orthogonal spline systems in $L^{p}$. Studia Mathematica, Tome 222 (2014) no. 1, pp. 51-86. doi: 10.4064/sm222-1-5
Cité par Sources :