Unconditionality of orthogonal spline systems in $L^{p}$
Studia Mathematica, Tome 222 (2014) no. 1, pp. 51-86

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that given any natural number $k$ and any dense point sequence $(t_n)$, the corresponding orthonormal spline system is an unconditional basis in reflexive $L^p$.
DOI : 10.4064/sm222-1-5
Keywords: prove given natural number dense point sequence corresponding orthonormal spline system unconditional basis reflexive nbsp

Markus Passenbrunner 1

1 Institute of Analysis Johannes Kepler University Linz Altenberger Strasse 69 4040 Linz, Austria
@article{10_4064_sm222_1_5,
     author = {Markus Passenbrunner},
     title = {Unconditionality of orthogonal spline systems in $L^{p}$},
     journal = {Studia Mathematica},
     pages = {51--86},
     publisher = {mathdoc},
     volume = {222},
     number = {1},
     year = {2014},
     doi = {10.4064/sm222-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-5/}
}
TY  - JOUR
AU  - Markus Passenbrunner
TI  - Unconditionality of orthogonal spline systems in $L^{p}$
JO  - Studia Mathematica
PY  - 2014
SP  - 51
EP  - 86
VL  - 222
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-5/
DO  - 10.4064/sm222-1-5
LA  - en
ID  - 10_4064_sm222_1_5
ER  - 
%0 Journal Article
%A Markus Passenbrunner
%T Unconditionality of orthogonal spline systems in $L^{p}$
%J Studia Mathematica
%D 2014
%P 51-86
%V 222
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-5/
%R 10.4064/sm222-1-5
%G en
%F 10_4064_sm222_1_5
Markus Passenbrunner. Unconditionality of orthogonal spline systems in $L^{p}$. Studia Mathematica, Tome 222 (2014) no. 1, pp. 51-86. doi: 10.4064/sm222-1-5

Cité par Sources :