Maximal singular integrals on product homogeneous groups
Studia Mathematica, Tome 222 (2014) no. 1, pp. 41-49

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove $L^p$ boundedness for $p\in (1,\infty )$ of maximal singular integral operators with rough kernels on product homogeneous groups under a sharp integrability condition of the kernels.
DOI : 10.4064/sm222-1-4
Keywords: prove boundedness infty maximal singular integral operators rough kernels product homogeneous groups under sharp integrability condition kernels

Yong Ding 1 ; Shuichi Sato 2

1 School of Mathematical Sciences Laboratory of Mathematics and Complex Systems (BNU) Ministry of Education Beijing Normal University Beijing 100875, P.R. China
2 Department of Mathematics Faculty of Education Kanazawa University Kanazawa 920-1192, Japan
@article{10_4064_sm222_1_4,
     author = {Yong Ding and Shuichi Sato},
     title = {Maximal singular integrals on product homogeneous groups},
     journal = {Studia Mathematica},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {222},
     number = {1},
     year = {2014},
     doi = {10.4064/sm222-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/}
}
TY  - JOUR
AU  - Yong Ding
AU  - Shuichi Sato
TI  - Maximal singular integrals on product homogeneous groups
JO  - Studia Mathematica
PY  - 2014
SP  - 41
EP  - 49
VL  - 222
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/
DO  - 10.4064/sm222-1-4
LA  - en
ID  - 10_4064_sm222_1_4
ER  - 
%0 Journal Article
%A Yong Ding
%A Shuichi Sato
%T Maximal singular integrals on product homogeneous groups
%J Studia Mathematica
%D 2014
%P 41-49
%V 222
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/
%R 10.4064/sm222-1-4
%G en
%F 10_4064_sm222_1_4
Yong Ding; Shuichi Sato. Maximal singular integrals on product homogeneous groups. Studia Mathematica, Tome 222 (2014) no. 1, pp. 41-49. doi: 10.4064/sm222-1-4

Cité par Sources :