1School of Mathematical Sciences Laboratory of Mathematics and Complex Systems (BNU) Ministry of Education Beijing Normal University Beijing 100875, P.R. China 2Department of Mathematics Faculty of Education Kanazawa University Kanazawa 920-1192, Japan
Studia Mathematica, Tome 222 (2014) no. 1, pp. 41-49
We prove $L^p$ boundedness for $p\in (1,\infty )$ of maximal singular integral operators with rough kernels on product homogeneous groups under a sharp integrability condition of the kernels.
Keywords:
prove boundedness infty maximal singular integral operators rough kernels product homogeneous groups under sharp integrability condition kernels
Affiliations des auteurs :
Yong Ding 
1
;
Shuichi Sato 
2
1
School of Mathematical Sciences Laboratory of Mathematics and Complex Systems (BNU) Ministry of Education Beijing Normal University Beijing 100875, P.R. China
2
Department of Mathematics Faculty of Education Kanazawa University Kanazawa 920-1192, Japan
@article{10_4064_sm222_1_4,
author = {Yong Ding and Shuichi Sato},
title = {Maximal singular integrals on product homogeneous groups},
journal = {Studia Mathematica},
pages = {41--49},
year = {2014},
volume = {222},
number = {1},
doi = {10.4064/sm222-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/}
}
TY - JOUR
AU - Yong Ding
AU - Shuichi Sato
TI - Maximal singular integrals on product homogeneous groups
JO - Studia Mathematica
PY - 2014
SP - 41
EP - 49
VL - 222
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/
DO - 10.4064/sm222-1-4
LA - en
ID - 10_4064_sm222_1_4
ER -
%0 Journal Article
%A Yong Ding
%A Shuichi Sato
%T Maximal singular integrals on product homogeneous groups
%J Studia Mathematica
%D 2014
%P 41-49
%V 222
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-4/
%R 10.4064/sm222-1-4
%G en
%F 10_4064_sm222_1_4
Yong Ding; Shuichi Sato. Maximal singular integrals on product homogeneous groups. Studia Mathematica, Tome 222 (2014) no. 1, pp. 41-49. doi: 10.4064/sm222-1-4