Sharp inequalities for Riesz transforms
Studia Mathematica, Tome 222 (2014) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish the following sharp local estimate for the family $\{R_j\}_{j=1}^d$ of Riesz transforms on $\mathbb R^d$. For any Borel subset $A$ of $\mathbb R^d$ and any function $f:\mathbb R^d\to \mathbb R$,
$$ \int_A |R_jf(x)|\,d x\leq C_p\|f\|_{L^p(\mathbb R^d)}|A|^{1/q},\quad\ 1 p \infty.$$
Here $q=p/(p-1)$ is the harmonic conjugate to $p$,
$$ C_p=\bigg[\frac{2^{q+2}\varGamma(q+1)}{\pi^{q+1}}\sum_{k=0}^\infty
\frac{(-1)^k}{(2k+1)^{q+1}}\bigg]^{1/q},\quad\ 1 p 2,$$
and
$$ C_p=\bigg[\frac{4\varGamma(q+1)}{\pi^{q}}\sum_{k=0}^\infty
\frac{1}{(2k+1)^{q}}\bigg]^{1/q},\quad\ 2\leq p \infty.$$
This enables us to determine the precise values of the weak-type constants for Riesz transforms for $1 p \infty$.
The proof rests on appropriate martingale inequalities, which are of independent interest.
Keywords:
establish following sharp local estimate family riesz transforms mathbb borel subset mathbb function mathbb mathbb int leq mathbb quad infty here p harmonic conjugate bigg frac vargamma sum infty frac bigg quad bigg frac vargamma sum infty frac bigg quad leq infty enables determine precise values weak type constants riesz transforms infty proof rests appropriate martingale inequalities which independent interest
Affiliations des auteurs :
Adam Osękowski 1
@article{10_4064_sm222_1_1,
author = {Adam Os\k{e}kowski},
title = {Sharp inequalities for {Riesz} transforms},
journal = {Studia Mathematica},
pages = {1--18},
publisher = {mathdoc},
volume = {222},
number = {1},
year = {2014},
doi = {10.4064/sm222-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm222-1-1/}
}
Adam Osękowski. Sharp inequalities for Riesz transforms. Studia Mathematica, Tome 222 (2014) no. 1, pp. 1-18. doi: 10.4064/sm222-1-1
Cité par Sources :