1Department of Mathematics and Physics Qatar University Doha, Qatar 2Department of Mathematics Bryn Mawr College Bryn Mawr, PA 19010, U.S.A. 3Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, U.S.A.
Studia Mathematica, Tome 221 (2014) no. 3, pp. 249-267
We establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase $P$. The kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than $\log\deg(P) $, which is optimal and was first obtained by Papadimitrakis and Parissis (2010) for kernels without any radial roughness. Among key ingredients of our methods are an $L^1 \to L^2$ estimate and extrapolation.
1
Department of Mathematics and Physics Qatar University Doha, Qatar
2
Department of Mathematics Bryn Mawr College Bryn Mawr, PA 19010, U.S.A.
3
Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, U.S.A.
@article{10_4064_sm221_3_4,
author = {Hussain Mohammad Al-Qassem and Leslie Cheng and Yibiao Pan},
title = {Rough oscillatory singular integrals on $\mathbb {R}^{n}$},
journal = {Studia Mathematica},
pages = {249--267},
year = {2014},
volume = {221},
number = {3},
doi = {10.4064/sm221-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-4/}
}
TY - JOUR
AU - Hussain Mohammad Al-Qassem
AU - Leslie Cheng
AU - Yibiao Pan
TI - Rough oscillatory singular integrals on $\mathbb {R}^{n}$
JO - Studia Mathematica
PY - 2014
SP - 249
EP - 267
VL - 221
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-4/
DO - 10.4064/sm221-3-4
LA - en
ID - 10_4064_sm221_3_4
ER -
%0 Journal Article
%A Hussain Mohammad Al-Qassem
%A Leslie Cheng
%A Yibiao Pan
%T Rough oscillatory singular integrals on $\mathbb {R}^{n}$
%J Studia Mathematica
%D 2014
%P 249-267
%V 221
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-4/
%R 10.4064/sm221-3-4
%G en
%F 10_4064_sm221_3_4
Hussain Mohammad Al-Qassem; Leslie Cheng; Yibiao Pan. Rough oscillatory singular integrals on $\mathbb {R}^{n}$. Studia Mathematica, Tome 221 (2014) no. 3, pp. 249-267. doi: 10.4064/sm221-3-4