${\rm A}_{1}$-regularity and boundedness of Calderón–Zygmund operators
Studia Mathematica, Tome 221 (2014) no. 3, pp. 231-247 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The Coifman–Fefferman inequality implies quite easily that a Calderón–Zygmund operator $T$ acts boundedly in a Banach lattice $X$ on $\mathbb R^n$ if the Hardy–Littlewood maximal operator $M$ is bounded in both $X$ and $X'$. We establish a converse result under the assumption that $X$ has the Fatou property and $X$ is $p$-convex and $q$-concave with some $1 p, q \infty $: if a linear operator $T$ is bounded in $X$ and $T$ is nondegenerate in a certain sense (for example, if $T$ is a Riesz transform) then $M$ is bounded in both $X$ and $X'$.
DOI : 10.4064/sm221-3-3
Keywords: coifman fefferman inequality implies quite easily calder zygmund operator acts boundedly banach lattice mathbb hardy littlewood maximal operator bounded establish converse result under assumption has fatou property p convex q concave infty linear operator bounded nondegenerate certain sense example riesz transform bounded nbsp

Dmitry V. Rutsky  1

1 Steklov Mathematical Institute St. Petersburg Branch Fontanka 27 191023 St. Petersburg, Russia
@article{10_4064_sm221_3_3,
     author = {Dmitry V. Rutsky},
     title = {${\rm A}_{1}$-regularity and boundedness
 of {Calder\'on{\textendash}Zygmund} operators},
     journal = {Studia Mathematica},
     pages = {231--247},
     year = {2014},
     volume = {221},
     number = {3},
     doi = {10.4064/sm221-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-3/}
}
TY  - JOUR
AU  - Dmitry V. Rutsky
TI  - ${\rm A}_{1}$-regularity and boundedness
 of Calderón–Zygmund operators
JO  - Studia Mathematica
PY  - 2014
SP  - 231
EP  - 247
VL  - 221
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-3/
DO  - 10.4064/sm221-3-3
LA  - en
ID  - 10_4064_sm221_3_3
ER  - 
%0 Journal Article
%A Dmitry V. Rutsky
%T ${\rm A}_{1}$-regularity and boundedness
 of Calderón–Zygmund operators
%J Studia Mathematica
%D 2014
%P 231-247
%V 221
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-3/
%R 10.4064/sm221-3-3
%G en
%F 10_4064_sm221_3_3
Dmitry V. Rutsky. ${\rm A}_{1}$-regularity and boundedness
 of Calderón–Zygmund operators. Studia Mathematica, Tome 221 (2014) no. 3, pp. 231-247. doi: 10.4064/sm221-3-3

Cité par Sources :