Orthogonally additive mappings on Hilbert modules
Studia Mathematica, Tome 221 (2014) no. 3, pp. 209-229
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the representation of orthogonally additive mappings acting on Hilbert $C^*$-modules and Hilbert $H^*$-modules.
One of our main results shows that every continuous orthogonally additive mapping $f$ from a Hilbert module $W$ over $\mathcal{K}(\mathcal{H})$ or $\mathcal{H}\mathcal{S}(\mathcal{H})$
to a complex normed space is of the form
$f(x)=T(x)+\varPhi(\langle x, x \rangle)$ for all $x\in W$,
where $T$ is a continuous additive mapping, and $\varPhi$ is a continuous linear mapping.
Keywords:
study representation orthogonally additive mappings acting hilbert * modules hilbert * modules main results shows every continuous orthogonally additive mapping hilbert module mathcal mathcal mathcal mathcal mathcal complex normed space form varphi langle rangle where continuous additive mapping varphi continuous linear mapping
Affiliations des auteurs :
Dijana Ilišević 1 ; Aleksej Turnšek 2 ; Dilian Yang 3
@article{10_4064_sm221_3_2,
author = {Dijana Ili\v{s}evi\'c and Aleksej Turn\v{s}ek and Dilian Yang},
title = {Orthogonally additive mappings on {Hilbert} modules},
journal = {Studia Mathematica},
pages = {209--229},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2014},
doi = {10.4064/sm221-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-2/}
}
TY - JOUR AU - Dijana Ilišević AU - Aleksej Turnšek AU - Dilian Yang TI - Orthogonally additive mappings on Hilbert modules JO - Studia Mathematica PY - 2014 SP - 209 EP - 229 VL - 221 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-2/ DO - 10.4064/sm221-3-2 LA - en ID - 10_4064_sm221_3_2 ER -
Dijana Ilišević; Aleksej Turnšek; Dilian Yang. Orthogonally additive mappings on Hilbert modules. Studia Mathematica, Tome 221 (2014) no. 3, pp. 209-229. doi: 10.4064/sm221-3-2
Cité par Sources :