Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$
Studia Mathematica, Tome 221 (2014) no. 3, pp. 197-208

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\Omega,\Omega'\subset\mathbb R^n$ be domains and let $f\colon\Omega\to\Omega'$ be a homeomorphism. We show that if the composition operator $T_f\colon u\mapsto u\circ f$ maps the Sobolev–Lorentz space $WL^{n,q}(\Omega')$ to $WL^{n,q}(\Omega)$ for some $q\neq n$ then $f$ must be a locally bilipschitz mapping.
DOI : 10.4064/sm221-3-1
Keywords: omega omega subset mathbb domains colon omega omega homeomorphism composition operator colon mapsto circ maps sobolev lorentz space omega omega neq locally bilipschitz mapping

Stanislav Hencl 1 ; Luděk Kleprlík 1 ; Jan Malý 1

1 Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic
@article{10_4064_sm221_3_1,
     author = {Stanislav Hencl and Lud\v{e}k Kleprl{\'\i}k and Jan Mal\'y},
     title = {Composition operator and {Sobolev{\textendash}Lorentz} spaces $WL^{n,q}$},
     journal = {Studia Mathematica},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {221},
     number = {3},
     year = {2014},
     doi = {10.4064/sm221-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-1/}
}
TY  - JOUR
AU  - Stanislav Hencl
AU  - Luděk Kleprlík
AU  - Jan Malý
TI  - Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$
JO  - Studia Mathematica
PY  - 2014
SP  - 197
EP  - 208
VL  - 221
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-1/
DO  - 10.4064/sm221-3-1
LA  - en
ID  - 10_4064_sm221_3_1
ER  - 
%0 Journal Article
%A Stanislav Hencl
%A Luděk Kleprlík
%A Jan Malý
%T Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$
%J Studia Mathematica
%D 2014
%P 197-208
%V 221
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-1/
%R 10.4064/sm221-3-1
%G en
%F 10_4064_sm221_3_1
Stanislav Hencl; Luděk Kleprlík; Jan Malý. Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$. Studia Mathematica, Tome 221 (2014) no. 3, pp. 197-208. doi: 10.4064/sm221-3-1

Cité par Sources :