Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$
Studia Mathematica, Tome 221 (2014) no. 3, pp. 197-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\Omega,\Omega'\subset\mathbb R^n$ be domains and let $f\colon\Omega\to\Omega'$ be a homeomorphism.
We show that if the composition operator $T_f\colon u\mapsto u\circ f$ maps the Sobolev–Lorentz space $WL^{n,q}(\Omega')$ to
$WL^{n,q}(\Omega)$ for some $q\neq n$ then $f$ must be a locally bilipschitz mapping.
Keywords:
omega omega subset mathbb domains colon omega omega homeomorphism composition operator colon mapsto circ maps sobolev lorentz space omega omega neq locally bilipschitz mapping
Affiliations des auteurs :
Stanislav Hencl 1 ; Luděk Kleprlík 1 ; Jan Malý 1
@article{10_4064_sm221_3_1,
author = {Stanislav Hencl and Lud\v{e}k Kleprl{\'\i}k and Jan Mal\'y},
title = {Composition operator and {Sobolev{\textendash}Lorentz} spaces $WL^{n,q}$},
journal = {Studia Mathematica},
pages = {197--208},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2014},
doi = {10.4064/sm221-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-1/}
}
TY - JOUR
AU - Stanislav Hencl
AU - Luděk Kleprlík
AU - Jan Malý
TI - Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$
JO - Studia Mathematica
PY - 2014
SP - 197
EP - 208
VL - 221
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-1/
DO - 10.4064/sm221-3-1
LA - en
ID - 10_4064_sm221_3_1
ER -
Stanislav Hencl; Luděk Kleprlík; Jan Malý. Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$. Studia Mathematica, Tome 221 (2014) no. 3, pp. 197-208. doi: 10.4064/sm221-3-1
Cité par Sources :