Gaussian estimates for Schrödinger perturbations
Studia Mathematica, Tome 221 (2014) no. 2, pp. 151-173
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We propose a new general method of estimating Schrödinger perturbations of transition densities using an auxiliary transition density as a majorant of the perturbation series. We present applications to Gaussian bounds by proving an optimal inequality involving four Gaussian kernels, which we call the 4G Theorem. The applications come with honest control of constants in estimates of Schrödinger perturbations of Gaussian-type heat kernels and also allow for specific non-Kato perturbations.
Mots-clés :
propose general method estimating schr dinger perturbations transition densities using auxiliary transition density majorant perturbation series present applications gaussian bounds proving optimal inequality involving gaussian kernels which call theorem applications come honest control constants estimates schr dinger perturbations gaussian type heat kernels allow specific non kato perturbations
Affiliations des auteurs :
Krzysztof Bogdan 1 ; Karol Szczypkowski 2
@article{10_4064_sm221_2_4,
author = {Krzysztof Bogdan and Karol Szczypkowski},
title = {Gaussian estimates for {Schr\"odinger} perturbations},
journal = {Studia Mathematica},
pages = {151--173},
publisher = {mathdoc},
volume = {221},
number = {2},
year = {2014},
doi = {10.4064/sm221-2-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-4/}
}
TY - JOUR AU - Krzysztof Bogdan AU - Karol Szczypkowski TI - Gaussian estimates for Schrödinger perturbations JO - Studia Mathematica PY - 2014 SP - 151 EP - 173 VL - 221 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-4/ DO - 10.4064/sm221-2-4 LA - fr ID - 10_4064_sm221_2_4 ER -
Krzysztof Bogdan; Karol Szczypkowski. Gaussian estimates for Schrödinger perturbations. Studia Mathematica, Tome 221 (2014) no. 2, pp. 151-173. doi: 10.4064/sm221-2-4
Cité par Sources :