Universal stability of Banach spaces for $\varepsilon $-isometries
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 221 (2014) no. 2, pp. 141-149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X$, $Y$ be real Banach spaces and $\varepsilon >0$. A standard $\varepsilon $-isometry $f:X\rightarrow Y$ is said to be $(\alpha ,\gamma )$-stable (with respect to $T:L(f)\equiv \mathop {\overline {\rm span}}\nolimits f(X)\rightarrow X$ for some $\alpha , \gamma >0$) if $T$ is a linear operator with $\| T\| \leq \alpha $ such that $Tf-{\rm Id}$ is uniformly bounded by $\gamma \varepsilon $ on $X$. The pair $(X,Y)$ is said to be stable if every standard $\varepsilon $-isometry $f:X\rightarrow Y$ is $(\alpha ,\gamma )$-stable for some $\alpha ,\gamma >0$. The space $X$ $[Y]$ is said to be universally left [right]-stable if $(X,Y)$ is always stable for every $Y\ [X]$. In this paper, we show that universally right-stable spaces are just Hilbert spaces; every injective space is universally left-stable; a Banach space $X$ isomorphic to a subspace of $\ell _\infty $ is universally left-stable if and only if it is isomorphic to $\ell _\infty $; and a separable space $X$ has the property that $(X,Y)$ is left-stable for every separable $Y$ if and only if $X$ is isomorphic to $c_0$. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
real banach spaces varepsilon standard varepsilon isometry rightarrow said alpha gamma stable respect equiv mathop overline span nolimits rightarrow alpha gamma linear operator leq alpha tf uniformly bounded gamma varepsilon pair said stable every standard varepsilon isometry rightarrow alpha gamma stable alpha gamma space said universally right stable always stable every paper universally right stable spaces just hilbert spaces every injective space universally left stable banach space isomorphic subspace ell infty universally left stable only isomorphic ell infty separable space has property left stable every separable only isomorphic nbsp
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Lixin Cheng 1 ; Duanxu Dai 1 ; Yunbai Dong 2 ; Yu Zhou 3
@article{10_4064_sm221_2_3,
     author = {Lixin Cheng and Duanxu Dai and Yunbai Dong and Yu Zhou},
     title = {Universal stability of {Banach} spaces for $\varepsilon $-isometries},
     journal = {Studia Mathematica},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {221},
     number = {2},
     year = {2014},
     doi = {10.4064/sm221-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/}
}
                      
                      
                    TY - JOUR AU - Lixin Cheng AU - Duanxu Dai AU - Yunbai Dong AU - Yu Zhou TI - Universal stability of Banach spaces for $\varepsilon $-isometries JO - Studia Mathematica PY - 2014 SP - 141 EP - 149 VL - 221 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/ DO - 10.4064/sm221-2-3 LA - en ID - 10_4064_sm221_2_3 ER -
%0 Journal Article %A Lixin Cheng %A Duanxu Dai %A Yunbai Dong %A Yu Zhou %T Universal stability of Banach spaces for $\varepsilon $-isometries %J Studia Mathematica %D 2014 %P 141-149 %V 221 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/ %R 10.4064/sm221-2-3 %G en %F 10_4064_sm221_2_3
Lixin Cheng; Duanxu Dai; Yunbai Dong; Yu Zhou. Universal stability of Banach spaces for $\varepsilon $-isometries. Studia Mathematica, Tome 221 (2014) no. 2, pp. 141-149. doi: 10.4064/sm221-2-3
Cité par Sources :
