Universal stability of Banach spaces for $\varepsilon $-isometries
Studia Mathematica, Tome 221 (2014) no. 2, pp. 141-149

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$, $Y$ be real Banach spaces and $\varepsilon >0$. A standard $\varepsilon $-isometry $f:X\rightarrow Y$ is said to be $(\alpha ,\gamma )$-stable (with respect to $T:L(f)\equiv \mathop {\overline {\rm span}}\nolimits f(X)\rightarrow X$ for some $\alpha , \gamma >0$) if $T$ is a linear operator with $\| T\| \leq \alpha $ such that $Tf-{\rm Id}$ is uniformly bounded by $\gamma \varepsilon $ on $X$. The pair $(X,Y)$ is said to be stable if every standard $\varepsilon $-isometry $f:X\rightarrow Y$ is $(\alpha ,\gamma )$-stable for some $\alpha ,\gamma >0$. The space $X$ $[Y]$ is said to be universally left [right]-stable if $(X,Y)$ is always stable for every $Y\ [X]$. In this paper, we show that universally right-stable spaces are just Hilbert spaces; every injective space is universally left-stable; a Banach space $X$ isomorphic to a subspace of $\ell _\infty $ is universally left-stable if and only if it is isomorphic to $\ell _\infty $; and a separable space $X$ has the property that $(X,Y)$ is left-stable for every separable $Y$ if and only if $X$ is isomorphic to $c_0$.
DOI : 10.4064/sm221-2-3
Keywords: real banach spaces varepsilon standard varepsilon isometry rightarrow said alpha gamma stable respect equiv mathop overline span nolimits rightarrow alpha gamma linear operator leq alpha tf uniformly bounded gamma varepsilon pair said stable every standard varepsilon isometry rightarrow alpha gamma stable alpha gamma space said universally right stable always stable every paper universally right stable spaces just hilbert spaces every injective space universally left stable banach space isomorphic subspace ell infty universally left stable only isomorphic ell infty separable space has property left stable every separable only isomorphic nbsp

Lixin Cheng 1 ; Duanxu Dai 1 ; Yunbai Dong 2 ; Yu Zhou 3

1 School of Mathematical Sciences Xiamen University Xiamen 361005, China
2 School of Mathematics and Computer Wuhan Textile University Wuhan 430073, China
3 School of Fundamental Studies Shanghai University of Engineering Science Shanghai 201620, China
@article{10_4064_sm221_2_3,
     author = {Lixin Cheng and Duanxu Dai and Yunbai Dong and Yu Zhou},
     title = {Universal stability of {Banach} spaces for $\varepsilon $-isometries},
     journal = {Studia Mathematica},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {221},
     number = {2},
     year = {2014},
     doi = {10.4064/sm221-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/}
}
TY  - JOUR
AU  - Lixin Cheng
AU  - Duanxu Dai
AU  - Yunbai Dong
AU  - Yu Zhou
TI  - Universal stability of Banach spaces for $\varepsilon $-isometries
JO  - Studia Mathematica
PY  - 2014
SP  - 141
EP  - 149
VL  - 221
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/
DO  - 10.4064/sm221-2-3
LA  - en
ID  - 10_4064_sm221_2_3
ER  - 
%0 Journal Article
%A Lixin Cheng
%A Duanxu Dai
%A Yunbai Dong
%A Yu Zhou
%T Universal stability of Banach spaces for $\varepsilon $-isometries
%J Studia Mathematica
%D 2014
%P 141-149
%V 221
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-3/
%R 10.4064/sm221-2-3
%G en
%F 10_4064_sm221_2_3
Lixin Cheng; Duanxu Dai; Yunbai Dong; Yu Zhou. Universal stability of Banach spaces for $\varepsilon $-isometries. Studia Mathematica, Tome 221 (2014) no. 2, pp. 141-149. doi: 10.4064/sm221-2-3

Cité par Sources :