Diagonals of projective tensor products and orthogonally additive polynomials
Studia Mathematica, Tome 221 (2014) no. 2, pp. 101-115

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $E$ be a Banach space with $1$-unconditional basis. Denote by $\varDelta(\mathop{\hat{\otimes}_{n,\pi}}E)\!$ (resp. $\varDelta(\mathop{\hat{\otimes}_{n,s,\pi}}E)$) the main diagonal space of the $n$-fold full (resp. symmetric) projective Banach space tensor product, and denote by $\varDelta(\mathop{\hat{\otimes}_{n,|\pi|}}E)$ (resp. $\varDelta(\mathop{\hat{\otimes}_{n,s,|\pi|}}E)$) the main diagonal space of the $n$-fold full (resp. symmetric) projective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic, and in addition, that they are isometrically lattice isomorphic to $E_{[n]}$, the completion of the $n$-concavification of $E$. Using these isometries, we also show that the norm of any (vector valued) continuous orthogonally additive homogeneous polynomial on $E$ equals the norm of its associated symmetric linear operator.
DOI : 10.4064/sm221-2-1
Keywords: banach space unconditional basis denote vardelta mathop hat otimes resp vardelta mathop hat otimes main diagonal space n fold full resp symmetric projective banach space tensor product denote vardelta mathop hat otimes resp vardelta mathop hat otimes main diagonal space n fold full resp symmetric projective banach lattice tensor product these main diagonal spaces pairwise isometrically isomorphic addition isometrically lattice isomorphic completion n concavification using these isometries norm vector valued continuous orthogonally additive homogeneous polynomial equals norm its associated symmetric linear operator

Qingying Bu 1 ; Gerard Buskes 1

1 Department of Mathematics University of Mississippi University, MS 38677, U.S.A.
@article{10_4064_sm221_2_1,
     author = {Qingying Bu and Gerard Buskes},
     title = {Diagonals of projective tensor products
 and orthogonally additive polynomials},
     journal = {Studia Mathematica},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {221},
     number = {2},
     year = {2014},
     doi = {10.4064/sm221-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-1/}
}
TY  - JOUR
AU  - Qingying Bu
AU  - Gerard Buskes
TI  - Diagonals of projective tensor products
 and orthogonally additive polynomials
JO  - Studia Mathematica
PY  - 2014
SP  - 101
EP  - 115
VL  - 221
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-1/
DO  - 10.4064/sm221-2-1
LA  - en
ID  - 10_4064_sm221_2_1
ER  - 
%0 Journal Article
%A Qingying Bu
%A Gerard Buskes
%T Diagonals of projective tensor products
 and orthogonally additive polynomials
%J Studia Mathematica
%D 2014
%P 101-115
%V 221
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-1/
%R 10.4064/sm221-2-1
%G en
%F 10_4064_sm221_2_1
Qingying Bu; Gerard Buskes. Diagonals of projective tensor products
 and orthogonally additive polynomials. Studia Mathematica, Tome 221 (2014) no. 2, pp. 101-115. doi: 10.4064/sm221-2-1

Cité par Sources :