Large structures made of nowhere $L^{q}$ functions
Studia Mathematica, Tome 221 (2014) no. 1, pp. 13-34 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We say that a real-valued function $f$ defined on a positive Borel measure space $(X,\mu )$ is nowhere $q$-integrable if, for each nonvoid open subset $U$ of $X$, the restriction $f|_U$ is not in $L^q(U)$. When $(X,\mu )$ has some natural properties, we show that certain sets of functions defined in $X$ which are $p$-integrable for some $p$'s but nowhere $q$-integrable for some other $q$'s ($0 p,q \infty $) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González, improve and complement recent spaceability and algebrability results of several authors and motivate new research directions in the field of spaceability.
DOI : 10.4064/sm221-1-2
Keywords: say real valued function defined positive borel measure space nowhere q integrable each nonvoid subset restriction has natural properties certain sets functions defined which p integrable nowhere q integrable other infty admit variety large linear algebraic structures within presented results answer question bernal gonz lez improve complement recent spaceability algebrability results several authors motivate research directions field spaceability

Szymon Głąb  1   ; Pedro L. Kaufmann  2   ; Leonardo Pellegrini  3

1 Institute of Mathematics Technical University of Łódź Wólczańska 215 93-005 Łódź, Poland
2 CAPES Foundation Ministry of Education of Brazil Brasília/DF 70040-020, Brazil and Institute de Mathématiques de Jussieu Université Pierre et Marie Curie 4 Place Jussieu 75005 Paris, France
3 Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão, 1010 CEP 05508-900, São Paulo, Brazil
@article{10_4064_sm221_1_2,
     author = {Szymon G{\l}\k{a}b and Pedro L. Kaufmann and Leonardo Pellegrini},
     title = {Large structures made of nowhere $L^{q}$ functions},
     journal = {Studia Mathematica},
     pages = {13--34},
     year = {2014},
     volume = {221},
     number = {1},
     doi = {10.4064/sm221-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-1-2/}
}
TY  - JOUR
AU  - Szymon Głąb
AU  - Pedro L. Kaufmann
AU  - Leonardo Pellegrini
TI  - Large structures made of nowhere $L^{q}$ functions
JO  - Studia Mathematica
PY  - 2014
SP  - 13
EP  - 34
VL  - 221
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm221-1-2/
DO  - 10.4064/sm221-1-2
LA  - en
ID  - 10_4064_sm221_1_2
ER  - 
%0 Journal Article
%A Szymon Głąb
%A Pedro L. Kaufmann
%A Leonardo Pellegrini
%T Large structures made of nowhere $L^{q}$ functions
%J Studia Mathematica
%D 2014
%P 13-34
%V 221
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-1-2/
%R 10.4064/sm221-1-2
%G en
%F 10_4064_sm221_1_2
Szymon Głąb; Pedro L. Kaufmann; Leonardo Pellegrini. Large structures made of nowhere $L^{q}$ functions. Studia Mathematica, Tome 221 (2014) no. 1, pp. 13-34. doi: 10.4064/sm221-1-2

Cité par Sources :