We first determine when the sum of products of Hankel and Toeplitz operators is equal to zero; then we characterize when the product of a Toeplitz operator and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz operator and when it is a finite rank perturbation of a Toeplitz operator.
@article{10_4064_sm220_3_5,
author = {Yufeng Lu and Linghui Kong},
title = {Products of {Toeplitz} operators and {Hankel} operators},
journal = {Studia Mathematica},
pages = {277--292},
year = {2014},
volume = {220},
number = {3},
doi = {10.4064/sm220-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-5/}
}
TY - JOUR
AU - Yufeng Lu
AU - Linghui Kong
TI - Products of Toeplitz operators and Hankel operators
JO - Studia Mathematica
PY - 2014
SP - 277
EP - 292
VL - 220
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-5/
DO - 10.4064/sm220-3-5
LA - en
ID - 10_4064_sm220_3_5
ER -
%0 Journal Article
%A Yufeng Lu
%A Linghui Kong
%T Products of Toeplitz operators and Hankel operators
%J Studia Mathematica
%D 2014
%P 277-292
%V 220
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-5/
%R 10.4064/sm220-3-5
%G en
%F 10_4064_sm220_3_5
Yufeng Lu; Linghui Kong. Products of Toeplitz operators and Hankel operators. Studia Mathematica, Tome 220 (2014) no. 3, pp. 277-292. doi: 10.4064/sm220-3-5