Types of tightness in spaces with unconditional basis
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 220 (2014) no. 3, pp. 243-264
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We present a reflexive Banach space with an unconditional basis which is quasi-minimal and tight by range, i.e. of type (4) in Ferenczi–Rosendal's list related to Gowers' classification program of Banach spaces, but in contrast to the recently constructed space of type (4), our space is also tight with constants, thus essentially extending the list of known examples in Gowers' program. The space is defined on the basis of a boundedly modified mixed Tsirelson space with the use of a special coding function.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
present reflexive banach space unconditional basis which quasi minimal tight range type ferenczi rosendals list related gowers classification program banach spaces contrast recently constructed space type space tight constants essentially extending list known examples gowers program space defined basis boundedly modified mixed tsirelson space special coding function
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Antonis Manoussakis 1 ; Anna Pelczar-Barwacz 2
@article{10_4064_sm220_3_3,
     author = {Antonis Manoussakis and Anna Pelczar-Barwacz},
     title = {Types of tightness in spaces with unconditional basis},
     journal = {Studia Mathematica},
     pages = {243--264},
     publisher = {mathdoc},
     volume = {220},
     number = {3},
     year = {2014},
     doi = {10.4064/sm220-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-3/}
}
                      
                      
                    TY - JOUR AU - Antonis Manoussakis AU - Anna Pelczar-Barwacz TI - Types of tightness in spaces with unconditional basis JO - Studia Mathematica PY - 2014 SP - 243 EP - 264 VL - 220 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-3/ DO - 10.4064/sm220-3-3 LA - en ID - 10_4064_sm220_3_3 ER -
Antonis Manoussakis; Anna Pelczar-Barwacz. Types of tightness in spaces with unconditional basis. Studia Mathematica, Tome 220 (2014) no. 3, pp. 243-264. doi: 10.4064/sm220-3-3
Cité par Sources :
