Dimensions of components of tensor products
 of representations of linear groups
 with applications to Beurling–Fourier algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 220 (2014) no. 3, pp. 221-241
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We give universal upper bounds on the relative dimensions of isotypic components of a tensor product of representations of the linear group $\operatorname{GL} (n)$ and universal upper bounds on the relative dimensions of irreducible components of a tensor product of representations of the special linear group $\operatorname{SL} (n)$. This problem is motivated by harmonic analysis problems, and we give some applications to the theory of Beurling–Fourier algebras. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
universal upper bounds relative dimensions isotypic components tensor product representations linear group operatorname universal upper bounds relative dimensions irreducible components tensor product representations special linear group operatorname problem motivated harmonic analysis problems applications theory beurling fourier algebras
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Benoît Collins 1 ; Hun Hee Lee 2 ; Piotr Śniady 3
@article{10_4064_sm220_3_2,
     author = {Beno{\^\i}t Collins and Hun Hee Lee and Piotr \'Sniady},
     title = {Dimensions of components of tensor products
 of representations of linear groups
 with applications to {Beurling{\textendash}Fourier} algebras},
     journal = {Studia Mathematica},
     pages = {221--241},
     publisher = {mathdoc},
     volume = {220},
     number = {3},
     year = {2014},
     doi = {10.4064/sm220-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-2/}
}
                      
                      
                    TY - JOUR AU - Benoît Collins AU - Hun Hee Lee AU - Piotr Śniady TI - Dimensions of components of tensor products of representations of linear groups with applications to Beurling–Fourier algebras JO - Studia Mathematica PY - 2014 SP - 221 EP - 241 VL - 220 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-2/ DO - 10.4064/sm220-3-2 LA - en ID - 10_4064_sm220_3_2 ER -
%0 Journal Article %A Benoît Collins %A Hun Hee Lee %A Piotr Śniady %T Dimensions of components of tensor products of representations of linear groups with applications to Beurling–Fourier algebras %J Studia Mathematica %D 2014 %P 221-241 %V 220 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-2/ %R 10.4064/sm220-3-2 %G en %F 10_4064_sm220_3_2
Benoît Collins; Hun Hee Lee; Piotr Śniady. Dimensions of components of tensor products of representations of linear groups with applications to Beurling–Fourier algebras. Studia Mathematica, Tome 220 (2014) no. 3, pp. 221-241. doi: 10.4064/sm220-3-2
Cité par Sources :
