Uncertainty principles for integral operators
Studia Mathematica, Tome 220 (2014) no. 3, pp. 197-220

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to prove new uncertainty principles for integral operators ${\mathcal T}$ with bounded kernel for which there is a Plancherel Theorem. The first of these results is an extension of Faris's local uncertainty principle which states that if a nonzero function $f\in L^2({\mathbb {R}}^d,\mu )$ is highly localized near a single point then ${\mathcal T} (f)$ cannot be concentrated in a set of finite measure. The second result extends the Benedicks–Amrein–Berthier uncertainty principle and states that a nonzero function $f\in L^2({\mathbb {R}}^d,\mu )$ and its integral transform ${\mathcal T} (f)$ cannot both have support of finite measure. From these two results we deduce a global uncertainty principle of Heisenberg type for the transformation ${\mathcal T}$. We apply our results to obtain new uncertainty principles for the Dunkl and Clifford Fourier transforms.
DOI : 10.4064/sm220-3-1
Keywords: paper prove uncertainty principles integral operators mathcal bounded kernel which there plancherel theorem first these results extension fariss local uncertainty principle which states nonzero function mathbb highly localized near single point mathcal cannot concentrated set finite measure second result extends benedicks amrein berthier uncertainty principle states nonzero function mathbb its integral transform mathcal cannot have support finite measure these results deduce global uncertainty principle heisenberg type transformation mathcal apply results obtain uncertainty principles dunkl clifford fourier transforms

Saifallah Ghobber 1 ; Philippe Jaming 2

1 Département de Mathématiques Appliquées Institut Préparatoire aux Études d'Ingénieurs de Nabeul Université de Carthage Campus Universitaire Merazka, 8000, Nabeul, Tunisie
2 Université Bordeaux IMB, UMR 5251 F-33400 Talence, France and CNRS, IMB, UMR 5251 F-33400 Talence, France
@article{10_4064_sm220_3_1,
     author = {Saifallah Ghobber and Philippe Jaming},
     title = {Uncertainty principles for integral operators},
     journal = {Studia Mathematica},
     pages = {197--220},
     publisher = {mathdoc},
     volume = {220},
     number = {3},
     year = {2014},
     doi = {10.4064/sm220-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-1/}
}
TY  - JOUR
AU  - Saifallah Ghobber
AU  - Philippe Jaming
TI  - Uncertainty principles for integral operators
JO  - Studia Mathematica
PY  - 2014
SP  - 197
EP  - 220
VL  - 220
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-1/
DO  - 10.4064/sm220-3-1
LA  - en
ID  - 10_4064_sm220_3_1
ER  - 
%0 Journal Article
%A Saifallah Ghobber
%A Philippe Jaming
%T Uncertainty principles for integral operators
%J Studia Mathematica
%D 2014
%P 197-220
%V 220
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-3-1/
%R 10.4064/sm220-3-1
%G en
%F 10_4064_sm220_3_1
Saifallah Ghobber; Philippe Jaming. Uncertainty principles for integral operators. Studia Mathematica, Tome 220 (2014) no. 3, pp. 197-220. doi: 10.4064/sm220-3-1

Cité par Sources :